Федеральное государственное бюджетное учреждение «Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

> На правах рукописи УДК 539.126.4

Черемушкина Евгения Вадимовна

# Поиск возбужденных электронов и дибозонных резонансов в конечном состоянии с лептоном, нейтрино и струями на детекторе ATLAS на LHC

01.04.23 – Физика высоких энергий

ДИССЕРТАЦИЯ на соискание ученой степени кандидата физико-математических наук

> Научный руководитель к. ф.-м. н., ведущий научный сотрудник Мягков Алексей Григорьевич

Протвино – 2020

# Оглавление

| Введение 5 |                                                            |    |  |  |  |  |  |
|------------|------------------------------------------------------------|----|--|--|--|--|--|
| Глава 1    | 1. Поиск новой физики в рамках моделей возбужденного       |    |  |  |  |  |  |
| элек       | атрона, гравитона Рэндалл–Сандрума и тяжелого W'-бозона    | 12 |  |  |  |  |  |
| 1.1.       | Возбужденные электроны                                     | 12 |  |  |  |  |  |
| 1.2.       | Дибозонные резонансы                                       | 15 |  |  |  |  |  |
| Глава 2    | 2. Детектор ATLAS                                          | 19 |  |  |  |  |  |
| 2.1.       | Внутренний детектор                                        | 19 |  |  |  |  |  |
| 2.2.       | Калориметрия                                               | 21 |  |  |  |  |  |
| 2.3.       | Мюонный спектрометр                                        | 23 |  |  |  |  |  |
| 2.4.       | Триггеры и система сбора данных                            | 24 |  |  |  |  |  |
| Глава З    | 3. Экспериментальные и смоделированные данные              | 26 |  |  |  |  |  |
| 3.1.       | Экспериментальные данные                                   | 26 |  |  |  |  |  |
| 3.2.       | Моделирование сигнальных наборов данных для модели возбуж- |    |  |  |  |  |  |
|            | денных электронов                                          | 28 |  |  |  |  |  |
| 3.3.       | Смоделированные сигнальные наборы данных для модели дибо-  |    |  |  |  |  |  |
|            | зонных резонансов                                          | 29 |  |  |  |  |  |
| 3.4.       | Смоделированные наборы данных для фоновых процессов        | 29 |  |  |  |  |  |
| 3.5.       | Моделирование взаимодействий pile-up                       | 32 |  |  |  |  |  |
| 3.6.       | Полный вес смоделированных событий                         | 32 |  |  |  |  |  |
| Глава 4    | 4. Первичные условия отбора событий                        | 34 |  |  |  |  |  |
| 4.1.       | Отбор объектов                                             | 34 |  |  |  |  |  |
| 4.2.       | Первичный отбор событий                                    | 47 |  |  |  |  |  |
| 4.3.       | Поправочные коэффициенты                                   | 52 |  |  |  |  |  |

| Глава 5. Фоновые процессы                                       | 53  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-----|--|--|--|--|--|--|
| 5.1. Матричный метод для оценки фона ложных электронов в поиске |     |  |  |  |  |  |  |
| возбужденных электронов                                         | 54  |  |  |  |  |  |  |
| 5.2. Композиция фоновых процессов после первичного отбора       | 56  |  |  |  |  |  |  |
| Глава 6. Стратегия анализа                                      | 60  |  |  |  |  |  |  |
| 6.1. Дискриминирующие переменные                                | 61  |  |  |  |  |  |  |
| 6.2. Сигнальные области                                         | 63  |  |  |  |  |  |  |
| 6.3. Контрольные области                                        | 67  |  |  |  |  |  |  |
| 6.4. Проверочные области                                        | 73  |  |  |  |  |  |  |
| Глава 7. Систематические неопределенности                       | 77  |  |  |  |  |  |  |
| 7.1. Экспериментальные неопределенности                         | 77  |  |  |  |  |  |  |
| 7.2. Теоретические неопределенности                             | 78  |  |  |  |  |  |  |
| Глава 8. Статистический анализ и результаты                     | 80  |  |  |  |  |  |  |
| 8.1. Статистическая модель                                      | 80  |  |  |  |  |  |  |
| 8.2. Фит модели                                                 | 81  |  |  |  |  |  |  |
| 8.3. Результаты поиска возбужденных электронов                  | 85  |  |  |  |  |  |  |
| 8.4. Результаты поиска дибозонных резонансов                    | 88  |  |  |  |  |  |  |
| Заключение                                                      |     |  |  |  |  |  |  |
| Список сокращений и условных обозначений                        |     |  |  |  |  |  |  |
| Список литературы                                               | 99  |  |  |  |  |  |  |
| Приложение А. Моделирование сигнальных наборов данных в         |     |  |  |  |  |  |  |
| поиске возбужденных электронов                                  | 117 |  |  |  |  |  |  |
| Приложение Б. Проверка моделирования сигнальных наборов         |     |  |  |  |  |  |  |
| Ланных                                                          | 123 |  |  |  |  |  |  |

| B.1. $ee^* \to e\nu W, m_{e^*} = 250, 1000, 4000$ Γ <sub>9</sub> B, Λ = 5000 Γ <sub>9</sub> B |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Приложение В. Наборы данных для фоновых процессов в поиске                                    |  |  |  |  |  |  |
| возбужденных электронов                                                                       |  |  |  |  |  |  |
| Приложение Г. Спектры кинематических переменных после пер-                                    |  |  |  |  |  |  |
| вичного отбора в поиске возбужденных электронов                                               |  |  |  |  |  |  |
| Приложение Д. Спектры кинематических переменных в инте-                                       |  |  |  |  |  |  |
| гральной $W$ CR в поиске возбужденных электронов 146                                          |  |  |  |  |  |  |
| Приложение Е. Спектры кинематических переменных в интеграль-                                  |  |  |  |  |  |  |
| ной $tar{t}$ CR в поиске возбужденных электронов                                              |  |  |  |  |  |  |
| Приложение Ж. Спектры кинематических переменных в инте-                                       |  |  |  |  |  |  |
| гральной $m_J$ VR в поиске возбужденных электронов 152                                        |  |  |  |  |  |  |
| Приложение З. Спектры кинематических переменных в интеграль-                                  |  |  |  |  |  |  |
| ной b-jet VR в поиске возбужденных электронов 155                                             |  |  |  |  |  |  |
| Приложение И. Числа событий после фита в контрольных обла-                                    |  |  |  |  |  |  |
| стях в поиске возбужденных электронов                                                         |  |  |  |  |  |  |
| Приложение К. Числа событий со статистическими и системати-                                   |  |  |  |  |  |  |
| ческим неопределенностями в поиске возбужденных электро-                                      |  |  |  |  |  |  |
| нов                                                                                           |  |  |  |  |  |  |
| Приложение Л. Параметры модели после фита в поиске возбуж-                                    |  |  |  |  |  |  |
| денных электронов                                                                             |  |  |  |  |  |  |

# Введение

#### Актуальность темы исследования

Современное описание физики частиц опирается на Стандартную модель (SM) элементарных частиц и их сильного, слабого и электромагнитного взаимодействий. Стандартная модель, с одной стороны, не является полной, так как не включает гравитационное взаимодействие и не предсказывает существование темной материи и энергии, а с другой — не предсказывает ряд экспериментальных фактов, таких как наличие трех поколений фермионов, осцилляции нейтрино, иерархия между электрослабым и планковским масштабами, асимметрия распространенности частиц и античастиц во вселенной. Поэтому, одним из самых актуальных направлений исследований в физике высоких энергий является поиск проявлений «новой физики» — расширений Стандартной модели.

Одним из таких возможных проявлений является одиночное рождение возбужденных электронов, предсказываемых различными моделями составленности, которые вводятся, в частности, для объяснения существования наблюдаемых фермионов в SM, их группировки в поколения и распределения по массам. Поиски возбужденных лептонов в различных конечных состояниях проводились ранее в экспериментах на ускорителях LEP, HERA, Tevatron. Их результаты позволили наложить ограничения при доступных энергиях и светимостях на параметры модели составленности: массу возбужденного лептона и масштаб составленности. Поиск возбужденных электронов в данной работе проведен при ранее недоступной энергии в системе центра масс, что позволило наложить более строгие ограничения на параметры модели составленности.

Кроме того, в данной работе проведен поиск дибозонных резонансов в рамках расширенной модели Рэндалл–Сандрума, позволяющей объяснить слабость гравитационного взаимодействия, и расширенной калибровочной модели, имеющей феноменологические свойства многих расширений калибровочного сектора SM. Поиски дибозонных резонансов осуществлялись ранее и продолжаются в настоящее время в экспериментах ATLAS и CMS на LHC.

#### Цели и задачи диссертационной работы

Цель настоящей диссертационной работы заключается в проверке моделей возбужденных электронов и дибозонных резонансов и получении ограничений на их параметры в полулептонном конечном состоянии, включающем лептон, нейтрино и адронные струи, на данных, собранных детектором ATLAS на LHC в протон–протонных (*pp*) столкновениях с энергией пучков в системе центра масс ( $\sqrt{s}$ ), равной 13 ТэВ в 2015–2016 годах и 8 ТэВ в 2012 году, соответственно. Для реализации поставленной цели автором были решены следующие задачи:

- Выбор и обоснование полулептонного конечного состояния для поиска возбужденных электронов.
- Моделирование сигнальных наборов данных для поиска возбужденных электронов в событиях с электроном, нейтрино и *W*-бозоном.
- Оптимизация условий отбора объектов и первичного отбора событий для поиска возбужденных электронов в конечном состоянии с электроном, нейтрино и адронно распадающимся W-бозоном в pp столкновениях с √s = 13 ТэВ в детекторе ATLAS.
- Оценка вклада фоновых процессов в поиске возбужденных электронов.
- Выбор дискриминирующих переменных, а также построение сигнальных, контрольных и проверочных областей для поиска возбужденных электронов в *pp* взаимодействиях при √s = 13 ТэВ.
- Оценка систематических неопределенностей в поиске возбужденных электронов.
- Проведение статистического анализа и получение ограничений на параметры модели возбужденных электронов в поиске в полулептонном конечном состоянии.

• Оптимизация условий отбора объектов и первичного отбора событий для поиска дибозонных резонансов в полулептонном конечном состоянии на данных, полученных на детекторе ATLAS в pp столкновениях при  $\sqrt{s} = 8$  ТэВ.

#### Научная новизна

Поиск возбужденных электронов в конечном состоянии с электроном, нейтрино и струями проведен на данных, полученных в протон–протонных столкновениях в детекторе ATLAS на LHC с беспрецедентно высокой энергией пучков в системе центра масс  $\sqrt{s} = 13$  ТэВ и набранной интегральной светимостью  $\mathcal{L}_{int} = 36.1 \text{ ф6}^{-1}$ . Кроме того, поиск возбужденных электронов в данном конечном состоянии выполнен впервые в эксперименте на LHC. Полученные результаты были скомбинированы с результатами поиска возбужденных электронов в конечном состоянии с двумя электронами и струями, что позволило установить наиболее жесткие ограничения на параметры модели возбужденных электронов в сравнении с результатами предыдущих анализов на момент написания данной диссертационной работы.

Поиск дибозонных резонансов в конечном состоянии с электроном, нейтрино и струями проведен на данных, полученных в протон–протонных столкновениях в детекторе ATLAS на LHC с беспрецедентно высокой, на момент его проведения, энергией  $\sqrt{s} = 8$  ТэВ и интегральной светимостью  $\mathcal{L}_{int} = 20.3 \text{ ф}6^{-1}$ . Для гравитона Калуца–Клейна в модели Рэндалл–Сандрума были получены наиболее жесткие ограничения снизу на массу в сравнении с анализами, проведенными на данных с  $\sqrt{s} = 8$  ТэВ в экспериментах ATLAS и CMS в других конечных состояниях.

#### Теоретическая и практическая значимость

Результаты поисков возбужденных электронов и дибозонных резонансов, включенные в данную диссертацию, являются практической проверкой теоретических и феноменологических моделей расширения SM, таких как модель составленности [1], расширенная модель Рэндалл–Сандрума [2] и расширенная калибровочная модель [3], и могут служить указаниями при дальнейшей теоретической разработке моделей этих классов. Результаты данной работы могут быть использованы для получения ограничений на параметры различных моделей новой физики вне Стандартной модели с использованием более полного набора данных, полученных в экспериментах на LHC. Методика поиска дибозонных резонансов при  $\sqrt{s} = 8$  ТэВ легла в основу последующих работ коллаборации ATLAS по поиску дибозонных резонансов в протон–протонных столкновениях при  $\sqrt{s} = 13$  ТэВ.

#### Положения, выносимые на защиту

Следующие положения выносятся на защиту диссертационной работы:

- 1. Выбор и обоснование полулептонного конечного состояния для поиска возбужденных электронов (Глава 1).
- Методика моделирования сигнальных наборов данных для поиска возбужденных электронов в событиях с электроном, нейтрино и W-бозоном (Глава 3).
- Оптимизация условий отбора объектов и первичного отбора событий для поиска возбужденных электронов в конечном состоянии с электроном, нейтрино и адронно распадающимся W-бозоном в pp столкновениях с √s = 13 ТэВ в детекторе ATLAS (Глава 4).
- 4. Оценка вклада фоновых процессов в поиске возбужденных электронов (Глава 5).
- Выбор дискриминирующих переменных, а также построение сигнальных, контрольных и проверочных областей для поиска возбужденных электронов в *pp* взаимодействиях при √s = 13 ТэВ (Глава 6).

- 6. Оценка систематических неопределенностей в поиске возбужденных электронов (Глава 7).
- Проведение статистического анализа и получение ограничений на параметры модели возбужденных электронов в поиске в полулептонном конечном состоянии (Глава 8).
- 8. Оптимизация условий отбора объектов и первичного отбора событий для поиска дибозонных резонансов в полулептонном конечном состоянии на данных, полученных на детекторе ATLAS в pp столкновениях при  $\sqrt{s} = 8$  ТэВ (Глава 4).

#### Степень достоверности и апробация результатов

Основные результаты диссертационной работы доложены лично автором на следующих конференциях по физике высоких энергий:

- "The 3rd Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 31 August – 5 September 2015 (LHCP2015)" в виде постерного доклада [4];
- "Международная сессия-конференция Секции ядерной физики ОФН РАН, ОИЯИ Дубна, Россия, 12–15 апреля 2016 (РАН2016)" в виде доклада на параллельной сессии [5];

а также на внутренних собраниях коллаборации ATLAS и семинарах НИЦ «Курчатовский институт» — ИФВЭ.

Кроме того, результаты диссертации были представлены соавторами коллаборации ATLAS на конференциях по физике высоких энергий:

 "European Physical Society Conference on High Energy Physics 2019, Ghent, Belgium, 10–17 July 2019 (EPS-HEP2019)" в виде доклада на параллельной сессии [6].

#### Публикации

Материалы диссертации опубликованы в четырех научных работах, из них три опубликованы в рецензируемых научных журналах:

- ATLAS Collaboration, "Search for excited electrons singly produced in protonproton collisions at  $\sqrt{s} = 13$  TeV with the ATLAS experiment at the LHC" [7];
- ATLAS Collaboration, "Search for production of WW/WZ resonances decaying to a lepton, neutrino and jets in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector" [8];
- Cheremushkina E., "Semileptonic (lepton, neutrino and jets) WW/WZ resonances searches at √s = 8 and 13 TeV with the ATLAS detector at the LHC" [5], по материалам доклада на конференции РАН2016, проведенной в ОИЯИ Дубна, Россия, в апреле 2016 года;

материалы доклада на конференции LHCP2015 опубликованы в виде препринта CERN:

• Cheremushkina E., "Semileptonic (lepton, neutrino and jets) WW/WZ resonances search at  $\sqrt{s} = 8$  TeV with the ATLAS detector at the LHC" [9].

#### Личный вклад автора

Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Вклад автора в поиск возбужденных электронов в конечном состоянии с электроном, нейтрино и W-бозоном, распадающимся в адронном канале,  $(e\nu J)$  на данных, полученных в протон–протонных столкновениях с энергией в системе центра масс  $\sqrt{s} = 13$  ТэВ, является определяющим, как и соответствующие вклады в публикацию [7] в реферируемом журнале и внутреннюю документацию коллаборации ATLAS. Кроме того, автором внесен определяющий вклад в работу по поиску дибозонных резонансов в конечном состоянии с лептоном (электроном или мюоном), нейтрино и струями в эксперименте ATLAS при  $\sqrt{s} = 8$  ТэВ, а именно, оптимизация условий отбора объектов и первичного отбора событий. Таким образом, личный вклад диссертанта является критически важным для всего направления поиска возбужденных электронов и дибозонных резонансов в эксперименте ATLAS.

#### Структура и объем диссертации

Обязательная часть диссертации состоит из введения, восьми глав, заключения и библиографии. Кроме того, текст диссертации включает в себя список сокращений и условных обозначений и 11 приложений. Общий объем диссертации равен 208 страницам, включая 311 рисунков и 63 таблицы. Библиография состоит из 133 наименований на 18 страницах.

# Глава 1

# Поиск новой физики в рамках моделей возбужденного электрона, гравитона Рэндалл–Сандрума и тяжелого W'-бозона

### 1.1. Возбужденные электроны

Возбужденные лептоны  $(\ell^*)$  и кварки  $(q^*)$  возникают в различных моделях составленности [1; 10—14], введенных для объяснения существования трех поколений лептонов и кварков в Стандартной модели (SM) и их иерархии с большим различием масс.

В данной работе используется феноменологическая модель составленных кварков и лептонов, впервые опубликованная в 1990 году [1]. В моделях составленности предложены новые гипотетические частицы, преоны, которые при больших масштабах составленности  $\Lambda$  формируют фермионы Стандартной модели и их возбужденные состояния. Связанные состояния преонов отображены в представлении калибровочной группы SM  $SU(3)_c \times SU(2)_W \times U(1)_Y$  так, что набор левых и правых хиральных состояний, защищенных  $SU(2)_L$ -симметрией от приобретения масс порядка  $\Lambda$  [1], отождествляется с фермионами Стандартной модели. Оставшиеся вектороподобные состояния, дублеты и синглеты по  $SU(2)_W$ , приобретают массы порядка  $\Lambda$ , и интерпретируются как возбужденные фермионы. Взаимодействия фермионов между собой (Уравнения 1.1 и 1.2) и с калибровочными полями (Уравнение 1.3) при характерных энергиях  $\lesssim \Lambda$ вводятся в приближении эффективной теории поля:

$$\Delta \mathcal{L}_{\rm CI} = \frac{2\pi}{\Lambda^2} j^{\mu} j_{\mu}, \qquad (1.1)$$

$$j_{\mu} = \bar{f}_{\rm L} \gamma_{\mu} f_{\rm L} + \bar{f}_{\rm L}^* \gamma_{\mu} f_{\rm L}^* + \left( \bar{f}_{\rm L}^* \gamma_{\mu} f_{\rm L} + \text{H.C.} \right), \qquad (1.2)$$

$$\Delta \mathcal{L}_{\rm GM} = \frac{1}{2\Lambda} \bar{f}_{\rm R}^* \sigma^{\mu\nu} \left[ g \frac{\tau}{2} W_{\mu\nu} + g' \frac{Y}{2} B_{\mu\nu} \right] f_{\rm L} + \text{H.C.}, \qquad (1.3)$$

где фермионы  $f = \ell, q$  обозначают лептоны и кварки SM, а возбужденные фермионы  $f^* = \ell^*, q^* -$  возбужденные лептоны и кварки. Индексы L и R указывают на, соответственно, левые и правые компоненты фермионных полей. В контактном четырех-фермионном взаимодействии (Уравнение 1.1) участвуют только левоспиральные токи  $j_{\mu}$  (Уравнение 1.2).  $W_{\mu\nu}$  и  $B_{\mu\nu}$  – тензоры калибровочных полей  $SU(2)_W$  и  $U(1)_Y$ , а g и g' — соответствующие константы взаимодействия электрослабой теории. Лево- и правоспиральные возбужденные фермионы образуют  $SU(2)_W$ -дублеты со слабым гиперзарядом Y, таким, что электрические заряды  $f^*$  совпадают с зарядами основных состояний f. Дублеты  $l^*_{\mathrm{L,R}}$  имеют слабый гиперзаряд Y = -1. Следовательно их компоненты с проекцией изоспина  $T_3 = -1/2$  представляют возбужденный лептон с электрическим зарядом Q = -1. Из Уравнений 1.1–1.2 следует, что модель возбужденных лептонов содержит два свободных параметра, ограничивающихся в данной работе: массу возбужденного электрона  $m_{e^*}$  и масштаб составленности  $\Lambda$ . Конкретные значения  $\{m_{e^*},\Lambda\}$  определяют кинематические свойства конечных состояний и предпочтительные каналы поиска. Вершины четырех-фермионных контактных взаимодействий (CI) подавлены множителем  $\propto 1/\Lambda^2,$  а вершины калибровочных взаимодействий (GM) — множителем  $\propto 1/\Lambda$ , что подразумевает рост сечений рождения  $e^*$  с ростом  $\hat{s}$ . Все безразмерные константы взаимодействий установлены равными единице [1]. Из ограничений унитарности контактного взаимодействия следует требование  $m_{e^*} < \Lambda$  [1; 15]. Вероятности распадов ( $\mathcal{B}$ ) возбужденных электронов в зависимости от  $m_{e^*}$  представлены на Рисунке 1.1 для случая  $\Lambda = 10$  ТэВ. Видно, что распады через калибровочное взаимодействие доминируют при  $m_{e^*} \ll \Lambda$ , а распады через контактное взаимодействие — при  $m_{e^*} \gtrsim \Lambda/3$ .

Поиски возбужденных лептонов проводились ранее в экспериментах LEP [16-



Рис. 1.1. Вероятности распадов возбужденных электронов в зависимости от  $m_{e^*}$ . Масштаб составленности  $\Lambda$  установлен равным 10 ТэВ.

19], HERA [20; 21], Tevatron [22—25] и LHC [26—34]. События с возбужденными лептонами в этих работах обнаружены не были. Наилучшее ограничение снизу на массу возбужденного электрона для случая  $m_{e^*} = \Lambda$  составило 3 ТэВ [27].

В настоящей работе представлен поиск возбужденных электронов, одиночно рожденных в протон–протонных (*pp*) столкновениях при энергии пучков в системе центра масс  $\sqrt{s} = 13$  ТэВ. Анализ проведен на наборе данных с интегральной светимостью  $\mathcal{L}_{int} = 36.1 \text{ ф6}^{-1}$  (Раздел 3.1), собранных за 2015 и 2016 года детектором ATLAS (Глава 2) на Большом Адронном Коллайдере (LHC).

Предполагается рождение возбужденных электронов в процессе  $q\bar{q} \rightarrow ee^*$ посредством контактного четырех-фермионного взаимодействия (Уравнения 1.1 – 1.2). Вклад рождения  $e^*$  посредством калибровочного взаимодействия является незначительным для масс  $m_{e^*} > 200$  ГэВ [28], и в данной работе не рассматривается. Распад  $e^*$  происходит посредством калибровочного взаимодействия (Уравнение 1.3) на W-бозон и электронное нейтрино  $\nu$ . W-бозон распадается в адронном канале, что приводит к конечному состоянию  $ee^* \rightarrow e\nu q\bar{q}$ . Соответствующая диаграмма Фейнмана представлена на Рисунке 1.2. Кварки в распаде W-бозона в результате адронизации образуют адронные струи j. Для поиска возбужденного электрона применен подход со струями большого радиуса J, происходящими от пары коллимированных струй. Вариант отбора событий с двумя пространственно разрешенными в детекторе струями оказался малоэффективным (Глава 4). Таким образом, производится поиск событий с ровно одним высокоэнергетическим электроном<sup>1</sup>, как минимум одной коллимированной струей J и потерянным поперечным импульсом ( $E_{\rm T}^{\rm miss}$ ). Данное конечное состояние обозначено как  $e\nu J$ .



Рис. 1.2. Диаграмма Фейнмана для процесса рождения  $ee^* \rightarrow e\nu q\bar{q}$ .

Важно отметить, что данный поиск возбужденных электронов в конечном состоянии  $e\nu J$  ранее не производился и является уникальным. На момент защиты данной диссертационной работы, результаты поиска являются новейшими. Кроме того, результаты, полученные для конечного состояния  $e\nu J$ , были скомбинированы с результатами поиска в конечном состоянии eejj, что позволило значительно усилить ограничения на параметры модели возбужденных электронов  $\{m_{e^*}, \Lambda\}$  по сравнению с ограничениями, полученными в ранее опубликованных работах (Раздел 8.3).

#### 1.2. Дибозонные резонансы

Ряд моделей новой физики предсказывает существование новых гипотетических частиц, распадающихся на пару калибровочных бозонов. В данной работе рассмотрены две такие модели: расширенная модель Рэндалл–Сандрума (RS1) и расширенная калибровочная модель (EGM).

<sup>&</sup>lt;sup>1</sup> В данной работе не различаются частицы и античастицы, здесь и далее под частицей подразумевается как сама частица, так и ее античастица.

В расширенной модели Рэндалл–Сандрума с искривленной конечной дополнительной размерностью такими частицами являются Калуца–Клейновские (КК) возбужденные состояния гравитона ( $G^*$ ) со спином 2 [2]. Дополнительная размерность в модели RS1 ограничена двумя "бранами": браной масштаба ТэВ, на которой находится четырехмерное пространство-время со всеми частицами и взаимодействиями Стандартной модели, и планковской браной, в "bulk" дополнительного измерения между которыми может распространяться только гравитационное взаимодействие. Данная модель характеризуется безразмерной константой связи  $k/\overline{M}_{\rm Pl}$  (в данной работе выбрано значение  $k/\overline{M}_{\rm Pl} = 1$ ), где k — кривизна дополнительного измерения, а  $\overline{M}_{\rm Pl} = M_{\rm Pl}/\sqrt{8\pi}$  — уменьшенная масса Планка.

В расширенной калибровочной модели [3] введены тяжелые калибровочные бозоны  $W'^{\pm}$  и Z'. Константы их взаимодействия с фермионами совпадают с константами Стандартной модели, а константа при вершине взаимодействия тяжелого W'-бозона с W- и Z-бозонами равна константе SM при вершине  $WW\gamma$ , умноженной на коэффициент смешивания  $\xi = c \times (m_W/m_{W'})^2$ , где  $m_W$  и  $m_{W'}$  массы W- и W'-бозонов, соответственно, а c = 1 — поправочный коэффициент константы связи. Ширина резонанса W' со спином 1 увеличивается линейно с его массой так, что при  $m_{W'} = 1$  ТэВ ширина W' составляет приблизительно 35 ГэВ.

Поиски дибозонных резонансов в различных конечных состояниях ранее проводились в экспериментах ATLAS [35—37] и CMS [38; 39] на LHC. Предыдущие результаты, полученные в эксперименте ATLAS в конечном состоянии  $\ell\ell q\bar{q}$ , запрещают существование W'-бозонов EGM с c = 1, распадающихся на W- и Z-бозоны, с массами до 1.59 ТэВ и G\* RS1 с  $k/\bar{M}_{\rm Pl} = 1$ , распадающихся на ZZ, с массами до 740 ГэВ [37]. В эксперименте CMS были установлены нижние ограничения на массы W'-бозоны EGM с c = 1 и G\* RS1 с  $k/\bar{M}_{\rm Pl} = 0.1$  в адронных каналах распада, равные 1.7 ТэВ и 1.2 ТэВ, соответственно [38].

В данной работе обсуждается поиск узких дибозонных WW/WZ резонан-

сов в столкновениях pp при энергии пучков в системе центра масс $\sqrt{s}=8$ ТэВ на данных, полученных в эксперименте ATLAS (Глава 2) на LHC за 2012 год с интегральной светимостью  $\mathcal{L}_{int} = 20.3 \ \varphi 6^{-1}$  (Раздел 3.1). На Рисунке 1.3 показаны диаграммы Фейнмана для процессов рождения  $G^*$  с распадом в  $W^+W^-$ (Рисунок 1.3, a) и  $W'^{\pm}$  в  $W^{\pm}Z$  (Рисунок 1.3,  $\delta$ ), где один W-бозон распадается в лептонном канале ( $W \to \ell \nu,$  где  $\ell = e, \mu$ ), а второй W/Z-бозон — в адронном  $(W/Z \rightarrow q\bar{q}'/q\bar{q},$  где q,q' = u,d,c,s,b). Таким образом, для поиска  $G^*$  и W' отбираются события с ровно одним электроном или мюоном, потерянным поперечным импульсом и струями. Как будет изложено в Главе 4, в данном анализе при 8 ТэВ использовались как разрешенные детектором пары струй *j* с реконструкцией в конусе с радиусом R = 0.4, так и коллимированные тяжелые струи J, к которым применена техника восстановления внутренней структуры для идентификации коллимированных струй из продуктов адронного распада W- и Z-бозонов. Конечные состояния распадов  $G^*$  и W' обозначены как  $\ell \nu j j$ или  $\ell \nu J$  (далее принято обозначение  $\ell \nu j j / J$ ). Оптимизация условий отбора для струй позволила значительно повысить чувствительность анализа в области больших масс резонансов по сравнению с предыдущими исследованиями.



Рис. 1.3. Диаграммы Фейнмана ведущего порядка для процессов *s*-канального рождения  $G^* \to WW(a)$  и  $W' \to WZ(b)$ .

Результаты данного поиска дибозонов в конечном состоянии  $\ell\ell q \bar{q}$  были

скомбинированы с результатами других поисков дибозонных резонансов в конечных состояниях  $\ell\nu\ell'\ell'$ ,  $\ell\ell q\bar{q}$  и в полном адронном конечном состоянии на детекторе ATLAS при  $\sqrt{s} = 8$  ТэВ [40]. Позднее были опубликованы новые результаты поисков дибозонных резонансов в различных конечных состояниях при последующих наборах данных с энергиями пучков  $\sqrt{s} = 13$  ТэВ в экспериментах ATLAS [41—47] и CMS [48; 49].

# Глава 2

# Детектор ATLAS

Детектор ATLAS [50] предназначен для выполнения широкого спектра задач в области физики высоких энергий, как прецизионных измерений параметров Стандартной модели, так и поиска проявлений физики за ее пределами.

В детекторе ATLAS выбрана правая система координат с началом отсчета в номинальной точке взаимодействия пучков. Ось z определена направлением пучка, положительное направление оси x указывает в центр кольца LHC, ось y направленна вверх. Азимутальный угол  $\phi$  измеряется в плоскости xy вокруг оси пучка, полярный угол  $\theta$  отсчитывается от оси z в плоскости xz. Псевдобыстрота определена как  $\eta = -\ln \tan(\theta/2)$ . Поперечные переменные, такие как поперечные импульс ( $p_{\rm T}$ ), поперечная энергия ( $E_{\rm T}$ ), потерянный поперечный импульс ( $E_{\rm T}^{\rm miss}$ ) определены в плоскости xy. Угловой параметр в пространстве  $\eta\phi$  задан выражением  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ .

Общая схема детектора представлена на Рисунке 2.1. Установка ATLAS имеет осевую симметрию относительно оси z с центром в точке взаимодействия пучков и зеркальную симметрию относительно плоскости xy. Система магнитов объединяет в себе тонкий сверхпроводящий соленоид, расположенный вокруг внутреннего детектора (ID, Раздел 2.1), и три больших азимутально симметричных сверхпроводящих тороида (один продольный и два торцевых), окружающих всю область калориметров (Раздел 2.2). Завершающим внешним слоем детектора является мюонный спектрометр (MS, Раздел 2.3). Сбор и хранение данных осуществляется с помощью системы TDAQ (Раздел 2.4).

# 2.1. Внутренний детектор

Каждые 25 нс два протонных пучка сталкиваются в точке взаимодействия пучков, образуя высокую плотность треков частиц в ID. Таким образом форми-



Рис. 2.1. Детектор ATLAS [50].

руются основные требования к ID: обеспечение высокого разрешения по импульсу и координатам и реконструкция как первичных, так и вторичных вершин в области  $|\eta| < 2.5$  для заряженных треков с  $p_{\rm T} > 0.5$  ГэВ, а также, идентификация электронов с  $|\eta| < 2.0$  и широким спектром энергий от 0.5–150 ГэВ. Для вышеперечисленных требований пиксельные и кремниевые микростриповые детекторы (SCT) комбинируются с детекторами переходного излучения (TRT).

Внутренний детектор помещен в магнитное поле 2 Тл, создаваемое центральным соленоидом. Ближе всего к оси пучка располагается пиксельный детектор, который состоит из трех концентрических цилиндров в продольной части детектора и трех дисков, перпендикулярных оси пучка, с каждого из торцов детектора. Слои пикселя расположены так, чтобы заряженный трек пересекал три слоя, которые разбиты на идентичные кремниевые полупроводниковые пиксельные сенсоры. Далее находится SCT детектор, который состоит из четырех цилиндров и девяти дисков, подобно пикселю. При прохождении через полупроводниковый сенсор пиксельного или SCT детекторов заряженная частица испытывает ионизационные потери энергии, создавая свободные заряды (электроны и дырки), которые собираются с помощью высокого напряжения, поданного на сенсор. В результате, трек заряженной частицы, рожденной в *pp* столкновении, реконструируется по не менее семи пространственным  $R - \phi, z$  координатам в объеме ID.

Внешним слоем ID является TRT детектор, состоящий из тонких (4 мм в диаметре) трубок, заполненных газовой смесью на основе ксенона. В продольной части детектора трубки длиной 144 см располагаются вдоль оси z, а в торцевых частях имеют длину 37 см, и размещены радиально на дисках. Каждый трек состоит из не менее 36 взаимодействий в объеме TRT, но, в отличии от полупроводниковых сенсоров, их координаты определены только в пространстве  $R - \phi$ .

В результате, система внутренних детекторов предоставляет прецизионную информацию о координатах и импульсах заряженных треков от пиксельного и SCT детекторов, которая далее комбинируется с измерениями в электромагнитном калориметре. Возможность идентификации электронов возникает благодаря регистрации фотонов переходного излучения в газовых трубках TRT. Также, благодаря высокой гранулярности внутреннего слоя (5 см в радиусе) пиксельного детектора возможна реконструкция вторичных вершин распадов, которая используется для мечения *τ*-лептона и тяжелых кварков.

# 2.2. Калориметрия

Калориметры должны обеспечивать эффективную регистрацию электромагнитных и адронных ливней, что достигается с помощью широкого интервала по псевдобыстроте ( $|\eta| < 4.9$ ) и достаточной эквивалентной парциальной толщины калориметров, последнее также позволяет ограничивать загрязнение мюонной системы. В областях  $\eta$ , пересекающихся с внутренним детектором, электромагнитный калориметр имеет высокую гранулярность, что позволяет проводить прецизионные измерения электронов и фотонов. В остальных областях более низкая гранулярность калориметров удовлетворяет физическим требованиям для реконструкции струй и потерянной поперечной энергии,  $E_{\rm T}^{\rm miss}$ .

Электромагнитный (ЕМ) калориметр состоит из центрального продольного цилиндра ( $|\eta| < 1.475$ ) и двух торцевых дисков ( $1.375 < |\eta| < 3.2$ ) — по одному с каждой из сторон детектора. Так как центральный соленоид окружен продольной частью ЕМ калориметра, то, для уменьшения неактивного материала перед калориметром, оба помещены в одну вакуумную камеру. Продольный цилиндр разделен пополам на два цилиндра с небольшим зазором в 4 мм между ними в z = 0. Каждый из торцевых дисков разделен на два коаксиальных цилиндра, с перекрытием областей 1.375 <  $|\eta|$  < 2.5 для внешнего цилиндра и  $2.5 < |\eta| < 3.2 -$ для внутреннего. ЕМ калориметр состоит из каптоновых электродов, имеющих форму гармошки, по всей поверхности покрытых свинцовыми пластинами в качестве вещества-поглотителя. Каждая часть ЕМ калориметра помещена в отдельный криостат, который заполнен активным веществом — жидким аргоном (отсюда ЕМ калориметр получил название жидкоаргонного, LAr), находящимся при температуре, равной примерно 160 К. LAr является абсолютно симметричным по углу  $\phi$ . Толщина же свинцовых пластин оптимизирована для областей  $\eta$ , области калориметра для прецизионной физики с  $|\eta| < 2.5$  имеет большую гранулярность, чем остальные.

Адронная калориметрия осуществляется с помощью трех калориметрических систем: адронного сцинтилляционного калориметра (TileCal), адронного торцевого LAr калориметра (LAr HEC) и переднего LAr калориметра (LAr FCal). TileCal расположен непосредственно вокруг всех LAr калориметров, и состоит из центрального длинного цилиндра ( $|\eta| < 1.0$ ) и двух дополнительных цилиндров по краям ( $0.8 < |\eta| < 1.7$ ). В качестве вещества-поглотителя используется сталь и сцинтилляторы как активное вещество. LAr HEC состоит из двух независимых дисков с каждого из торцов, которые выполнены из параллельных медных пластин, промежутки между которыми заполнены жидким аргоном, и находятся сразу за EM LAr дисками с  $1.5 < |\eta| < 3.2$ . LAr FCAL  $(3.1 < |\eta| < 4.9)$  представляет собой два цилиндра по одному с каждого торца, которые расположены вдоль оси пучка внутри адронных жидкоаргонных дисков. Каждый цилиндр разделен на три блока: ближний к точке взаимодействия пучков сделан из меди и предназначен для электромагнитных измерений, два других — из вольфрама, для измерения энергии адронных ливней, а также уменьшения уровня радиационного фона в мюонном спектрометре.

#### 2.3. Мюонный спектрометр

Калориметры окружены системой сверхпроводящих тороидальных магнитов, состоящих из центрального цилиндра с воздушными зазорами, который создает магнитное поле в области  $|\eta| < 1.4$ , и двух торцевых магнитов для  $1.6 < |\eta| < 2.7$ . В переходной области  $1.4 < |\eta| < 1.6$  магнитное поле определяется суперпозицией полей от центрального и торцевых тороидов. Конфигурация тороида задает весь дизайн мюонного спектрометра (MS), где магнитное поле перпендикулярно трекам мюонов. В центральной области треки мюонов измеряются тремя аксиально симметричными цилиндрическими слоями мюонных камер, расположенных вокруг оси пучка, а в торцевых и переходных областях камеры помещены на плоскости, перпендикулярные пучку, также в три слоя.

Для прецизионных измерений координат мюонных треков используются два типа мюонных камер: мониторируемые дрейфовые трубки (MDT) в широком диапазоне по псевдобыстроте,  $|\eta| < 2.7$ , и катодные стриповые камеры (CSC) в областях  $2.0 < |\eta| < 2.7$ . Камеры MDT размещаются как в центральной, так и в торцевых частях MS, и представляют собой набор алюминиевых катодных трубок с анодной нитью внутри, заполненных газовой смесью на основе аргона. Мюонные камеры CSC расположены на двух торцевых дисках с каждой стороны детектора по восемь больших камер на одном диске и восемь малых на втором. Каждая камера состоит из радиальных анодных нитей и перпендикулярных им многостриповым катодам.

В качестве триггерной системы мюонов используются камеры RPC в центральной части детектора ( $|\eta| < 1.05$ ) и TGC в торцевых частях ( $1.05 < |\eta| < 2.4$ ). Триггерные камеры выполняют две функции: определение величины поперечных импульсов мюонов, что в дальнейшем используются триггерами первого уровня (Раздел 2.4), и определение координаты по  $\phi$  дополнительно к информации от MDT камер.

## 2.4. Триггеры и система сбора данных

В условиях LHC при беспрецедентно высокой плотности взаимодействий протонов, хранить весь объем данных не представляется возможным, поэтому сохраняются только интересные события, отбор которых происходит с помощью системы триггеров и сбора данных (DAQ, совокупно — TDAQ), вместе с системами временного, триггерного и детекторного контроля, которые встроены в архитектуру подсистем детектора. Система триггеров разделена на несколько уровней, так что на каждом последующем уровне события проверяются более жесткими условиями отбора, позволяя таким образом уменьшить объем сохраняемых данных.

В первом периоде сбора данных (Run I) с 2009 по начало 2013 года при  $\sqrt{s} = 7,8$  ТэВ система триггеров разделена на три уровня: триггеры первого (L1), второго (L2) уровней и фильтр событий (EF). Для быстрого (менее чем за 2.5 мс) принятия решения на триггерном уровне L1 используется ограниченное количество информации о событии, позволяя отбирать 75000 событий/с (75 кГц). Также, в каждом отобранном событии L1 триггер определяет интересные области (ROI), то есть те области детектора в пространстве  $\eta\phi$ , в которых регистрируются интересующие наблюдателя объекты. Данные о ROI включают в себя информацию о типе регистрируемых объектов, пройденных условиях отбора вместе с их порогами. Далее эти данные используются триггерами высших

уровней. Система DAQ временно накапливает полученные данные о событиях с детектора, прошедших L1 триггер.

Триггер L2 производит отбор событий, используя полную информацию с детектора только в конкретных ROI события, полученных с L1 триггера, что составляет всего 2% от общих данных события. Так, на втором уровне триггеров объем событий уменьшается до 3.5 кГц со скоростью обработки одного события примерно 40 мс. Заключительной ступенью отбора событий является EF триггер, который понижает уровень отбираемых событий до 200 Гц. На этом этапе применяются процедуры оффлайн-анализа, при котором на каждое событие отводится порядка 4 с. Данные о событиях, прошедших EF триггер, помещаются на постоянное хранение в компьютерном центре в ATLAS.

Во втором периоде сбора данных (Run II) с 2015 по 2018 года энергия пучков возросла до 13 ТэВ, а также выросли светимость и среднее число протон–протонных взаимодействий на одно пересечение сгустков протонов, поэтому триггерная система была модернизирована. Уровень отбора событий триггера L1 вырос с 70 до 100 кГц. Триггеры L2 и ЕF были объединены в единый триггер высокого уровня HLT [51].

# Глава З

# Экспериментальные и смоделированные данные

Экспериментальные данные, используемые в поисках возбужденных электронов (EL) и дибозонных резонансов (VV) обсуждаются в Разделе 3.1. Моделирование сигнальных наборов данных, необходимых для оптимизации отбора событий в поисках EL и VV, описано в Разделах 3.2 и 3.3, соответственно. Инструменты, используемые для моделирования основных фоновых процессов для сигнальных моделей EL и VV, перечислены в Разделе 3.4. Учет эффекта множественных взаимодействий, сопутствующих рассматриваемому событию, описан в Разделе 3.5. Процедуры вычисления «весов», используемых для улучшения согласования смоделированного фона с реальными данными, описаны в Разделе 3.6.

# 3.1. Экспериментальные данные

Для поиска возбужденных электронов в конечном состоянии  $e\nu J$  использованы данные, собранные на детекторе ATLAS на LHC в 2015–2016 годах в протон–протонных столкновениях с энергией пучков в системе центра масс  $\sqrt{s} = 13$  ТэВ с промежутками в 25 нс между сгустками протонов в пучках. Полная интегральная светимость, полученная в периоды сбора данных при номинальной работе всех необходимых подсистем детектора в 2015 и 2016 годах, равна 36.1 фб<sup>-1</sup>. Поиск дибозонных резонансов в конечном состоянии  $\ell\nu jj/J$ проведен на данных детектора ATLAS, полученных в *pp* взаимодействиях с  $\sqrt{s} = 8$  ТэВ с промежутками в 50 нс между сгустками протонов за 2012 год с интегральной светимостью, равной 20.3 фб<sup>-1</sup>. Для повышения качества собранных данных в обоих анализах исключены события с всплесками шума в калориметрах, а также события с неполной информацией.

Все смоделированные события (как фоновые, так и сигнальные) с реальны-

ми электронами, рожденными из тяжелых электрослабых (EW) частиц, прошли через симуляцию детектора ATLAS [52]. Полная симуляция (FULLSIM) отклика детектора на фоновые процессы SM и сигнальный процесс  $ee^* \rightarrow e\nu W$  получена с помощью GEANT4 [53]. Для реконструкции как экспериментальных, так и смоделированных данных использовалось одинаковое программное обеспечение.

Для поиска возбужденных электронов события записаны с использованием одного из двух одноэлектронных триггеров с пороговыми значениями поперечной энергии  $E_{\rm T}=60~\Gamma$ эВ и идентификацией (Раздел 4.1.1) medium id или 120 ГэВ и идентификацие<br/>йloose~idв 2015 году и  $E_{\rm T}=60$ Г<br/>эВ medium~idили 140 ГэВ loose id в 2016 году. Комбинация триггера с низким энергетическим порогом и жесткими критериями идентификации электрона с триггером с высоким энергетическим порогом и ослабленными идентификационными критериями в результате улучшает эффективность одноэлектронного триггера до 90% для электронов в рассматриваемом фазовом пространстве [51]. Однолептонные триггеры в поиске дибозонных резонансов комбинировались по такому же принципу: для электронного конечного состояния с пороговыми значениями поперечной энергии  $E_{\rm T} = 24$  и 60 ГэВ, причем оба с идентификацией medium *id*, но первый с адронной изоляцией  $\leq 1$  ГэВ на уровне L1 и трековой изоляцией (Раздел 4.1.1)  $p_{\rm T}^{\rm cone0.2}/p_{\rm T} < 0.1$  на уровне EF, а для мюонного —  $E_{\rm T} = 24$  и 36 ГэВ, с идентификацией *tight id*, причем первый триггер включал требование трековой изоляции  $p_{\rm T}^{\rm cone0.2}/p_{\rm T} < 0.12$  на уровне ЕГ [54; 55].

Отобранные события содержат несколько протон–протонных столкновений в одном пересечении протонных сгустков (pile-up). Среднее число pile-up взаимодействий составляло 21 в данных 2012 года и 24 — в 2015–2016 годах, что приводило к реконструкции множественных вершин в событии. В качестве первичной вершины (PV) выбирается вершина с наибольшей суммой квадратов поперечных импульсов заряженных частиц,  $\Sigma p_{\rm T}^2$ .

# 3.2. Моделирование сигнальных наборов данных для модели возбужденных электронов

Наборы сигнальных событий для модели возбужденных электронов были смоделированы для электронного и мюонного<sup>1</sup> каналов для масштаба составленности  $\Lambda = 5$  ТэВ и диапазона масс возбужденного лептона (электрона или мюона) от 100 ГэВ до 1 ТэВ с шагом, равным 100 ГэВ, и от 1 ТэВ до 4 ТэВ с шагом в 250 ГэВ. Эффектом зависимости полной ширины  $l^*$  от параметра  $\Lambda$ при  $m_{l^*} < \Lambda$  можно пренебречь, что было проверено в поиске возбужденных мюонов в конечном состоянии  $\mu \mu j j$  на детекторе ATLAS при  $\sqrt{s} = 8$  ТэВ [29]. Все сигнальные наборы данных прошли через полную симуляцию отклика детектора ATLAS FULLSIM GEANT4<sup>2</sup>.

Сигнальные наборы данных были смоделированы с помощью генератора РYTHIA 8.210 [56] с использованием матричного элемента (ME) ведущего порядка (LO), набора функций распределения партонов (PDF) NNPDF23LO [57] и набора параметров алгоритмов построения КХД-каскадов, фрагментации и адронизации A14 [58]. Парциальные ширины распадов  $l^*$  для смоделированных сигнальных наборов данных были получены с помощью CALCHEP 3.6.25 [59] с учетом ненулевых масс кварков, так как модель возбужденного лептона в РYTHIA 8.210 рассматривает продукты распада возбужденного лептона как безмассовые частицы. Рассчитанные парциальные ширины для каждого значения  $m_{l^*}$ , приведенные в Таблице А.1 (Приложение А), использовались для дополнительной настройки РYTHIA 8.210 при моделировании сигнальных наборов данных. Распады *b*- и *с*-адронов в смоделированных наборах данных для сиг-

 $<sup>^1</sup>$  Мюонный канал  $(\mu\mu^* \to \mu\nu W (\to qq))$ далее в анализе не использовался.

<sup>&</sup>lt;sup>2</sup> В эксперименте ATLAS так же активно используется быстрая симуляция детектора (ATLFASTII), в которой симуляция внутреннего детектора, основанная на GEANT4, комбинируется с параметризованной симуляцией калориметров [52]. Не смотря на то, что данный тип симуляции значительно экономит процессорное время, и, следовательно, позволяет смоделировать наборы данных с большей статистикой, для поиска возбужденных электронов в конечном состоянии  $e\nu J$  была выбрана полная симуляция, обеспечивающая более надежную реконструкцию коллимированных струй.

нальных процессов моделировались с помощью EvtGen 1.2.0 [60].

В Приложении Б приведены проверочные распределения для различных кинематических переменных, полученные для частиц на уровне генератора, необходимые для качественной проверки достоверности смоделированных наборов данных для сигнальных процессов.

# 3.3. Смоделированные сигнальные наборы данных для модели дибозонных резонансов

Используемые сигнальные наборы данных в поиске дибозонных резонансов в конечном состоянии  $\ell \nu j j / J$  смоделированы для масс резонансов от 300 ГэВ до 2500 ГэВ с шагом, равным 100 ГэВ. Сигнальные события для модели гравитона Рэндалл–Сандрума RS1  $G^*$  с константой  $k/M_{\rm Pl} = 1.0$  смоделированы с помощью генератора CALCHEP в ведущем порядке теории возмущений с распадом  $G^*$  в пару WW, которая затем распадается в  $\ell \nu q \bar{q}$ . Для тяжелого W' расширенной калибровочной модели события смоделированы генератором Рутніа 8 с константой c = 1 и нормировкой полного сечения на значение, полученное во втором после ведущего порядке (NNLO) с помощью программы ZWPROD [61], с последующим распадом  $W' \to WZ \to \ell \nu q \bar{q}$ . Партонные ливни и их адронизация смоделированы генератором Рутніа 8 с набором PDF CTEQ6L1 [62] и MSTW2008LO [63] для  $G^*$  и W', соответственно.

# 3.4. Смоделированные наборы данных для фоновых процессов

Как показано далее в Главе 5, доминирующими фоновыми процессами в поиске возбужденных электронов в конечном состоянии  $e\nu J$  являются ассоциированное рождение  $W(\rightarrow e\nu) + \text{jets}$  и рождение пары  $t\bar{t}$ . Меньший вклад в композицию фона вносят процессы рождения одиночного *t*-кварка (Single-*t*) (в *Wt*, s- и t-каналах),  $W (\to \tau \nu)$ +jets,  $Z/\gamma^*$ +jets и дибозонов (VV = WW/WZ/ZZ). В поиске дибозонных резонансов в конечном состоянии  $\ell \nu j j / J$  основной вклад вносит фоновый процесс рождения W+jets с распадами W-бозонов в электронном, мюонном и  $\tau$ -лептонном каналах. Далее по убыванию значимости следуют фоновые процессы  $t\bar{t}$ , Single-t, VV и  $Z/\gamma^*$  + jets.

Процессы рождения W + jets и  $Z/\gamma^*$  + jets смоделированы с помощью генератора SHERPA 2.2.1 [64] с набором PDF NNPDF 3.0 [65] для поиска EL и SHERPA 1.4.1 [64] с набором PDF CT10 [66] для анализа VV. Партонные конечные состояния, рожденные вместе с W- и Z-бозонами, содержащие до двух партонов, были смоделированы в следующем за ведущим порядке (NLO), а содержащие три или четыре партона — в LO с использованием программы OPENLOOPS [67] и COMIX [68] для NLO и LO, соответственно. Двойной счет событий с одинаковыми партонными конечными состояниями, смоделированных различными комбинациями ME и партонных ливней (PS), был устранен в соответствии с алгоритмом ME+PS@NLO [69]. Наборы данных смоделированы отдельно в соответствии с ароматом лептона для распадов бозонов  $W \to \ell \nu$ и  $Z \to \ell \ell$ , где  $\ell = e, \mu, \tau^3$ . Так как дифференциальное сечение данных процессов быстро спадает с ростом поперечного импульса W- или Z-бозона, то для обеспечения достаточной статистики в малонаселенных областях фазового пространства наборы данных были смоделированы отдельно для различных промежутков по переменной  $\max\{H_{\rm T}, p_{\rm T}^{W(Z)}\}$ . Помимо этого, для каждого промежутка смоделированы три отдельных набора данных в соответствии с содержанием тяжелых ароматов в событиях: один набор данных, содержащий *b*-кварки, второй, содержащий *с*-кварки, но не содержащий *b*-кварки, и третий, не содержащий тяжелых ароматов. Смоделированные наборы данных W + jetsи  $Z/\gamma^*$  + jets были нормированы на полные инклюзивные сечения рождения, вычисленные в приближении NNLO программами FEWZ [70] для анализа EL и DYNNLO [71] для анализа VV. Списки наборов данных для W+jets и  $Z/\gamma^*$ +jets

<sup>&</sup>lt;sup>3</sup> Мюонный канал не рассматривается в поиске EL.

приведены в Таблицах В.1–В.4 (Приложение В) для поиска EL.

Для поиска возбужденных электронов наборы данных для процесса рождения  $t\bar{t}$  смоделированы в приближении NLO по константе сильного взаимодействия генератором POWHEG-BOX v2 [72-75] с сохранением корреляций спинов кварков в конечном состоянии и набором PDF CT10 [66]. Процессы EW sи t-канального рождения одиночного t-кварка (Single-t), как и ассоциированного с W-бозоном рождения одиночного t-кварка, смоделированы с помощью POWHEG-BOX v1 [76; 77]. Партонные ливни, адронизация и дополнительные столкновения партонов, произошедшие в том же протон-протонном столкновении вместе с рассматриваемым основным событием (сопутствующие события), смоделированы с помощью генератора РУТНІА 8.210 для  $t\bar{t}$  и РУТНІА 6.428 [78] для Single-t. Генераторы РУТНІА 8.210 и РУТНІА 6.428 используют настройки наборов параметров A14 и Perugia 2012 [79], соответственно. Для поиска дибозонных резонансов наборы данных для процессов  $t\bar{t}$  и Single-t (s-канал и Wt) смоделированы генератором MC@NLO [80] с использованием HERWIG [81] для адронизации партонов и JIMMY [82] для моделирования сопутствующих событий, а *t*-канал для Single-*t* смоделирован генератором ACERMC [83] с РУТНІА 6.4. Смоделированные наборы событий нормированы на полные инклюзивные сечения рождения, вычисленные с помощью программы Top++ v2.0 [84] с константой сильного взаимодействия, вычисленной в приближении NNLO и описанием эмиссии мягкого глюона во втором после ведущего логарифмическом приближении (NNLL) для процесса рождения  $t\bar{t}$  [85—90] и в приближении NLO+NNLL для процесса рождения Single-t [91—93]. Распады b- и c-адронов в смоделированных наборах данных для процессов рождения  $t\bar{t}$  и Single-t были получены с помощью EvtGen v1.2.0 [60]. Используемые смоделированные наборы данных для  $t\bar{t}$  и Single-t перечислены в Таблице В.5 (Приложение В) для поиска EL.

События рождения дибозонов WW, WZ и ZZ, распадающихся в  $\ell \nu q \bar{q}$ и  $\ell \ell q \bar{q}$ , смоделированы с помощью генераторов SHERPA 2.2.1 с набором PDF NNPDF 3.0 для анализа EL и HERWIG +JIMMY для анализа VV. События, содержащие ноль или один партон в конечном распаде, смоделированы с МЕ в приближении NLO. События с двумя или тремя кварками или глюонами смоделированы с МЕ в приближении LO. Последующая эмиссия мягкого глюона смоделирована с помощью алгоритма ME+PS. Перечень дибозонных наборов данных представлен в Таблице B.6 (Приложение B) для поиска EL.

# 3.5. Моделирование взаимодействий pile-up

Ріle-up взаимодействия описываются с помощью наложения на каждое смоделированное сигнальное или фоновое событие случайного числа неупругих событий, удовлетворяющих минимальным требованиям отбора. Такие события были смоделированы генератором РYTHIA 8.186 [94] с набором параметров A2 [95] и PDF MSTW2008LO [63]. Пространственное распределение смоделированных pile-up вершин и распределение их среднего числа в событии,  $\langle \mu \rangle$ , близки к усредненным наблюдаемым распределениям в реальных данных. Чтобы скорректировать оставшуюся разницу между реальным и смоделированным pile-up, каждое смоделированное событие перевзвешивается так, чтобы полученное распределение среднего числа взаимодействий и их пространственное распределение в смоделированных наборах данных соответствовало наблюдаемым в реальных данных при усреднении по полной статистике.

## 3.6. Полный вес смоделированных событий

Теоретический вес $w_i^{\rm theory}$ каждого смоделированного события iзадан Уравнением 3.1:

$$w_i^{\text{theory}} = \frac{(\sigma \times \mathcal{B}) \times k_{\text{factor}} \times \epsilon_{\text{filter}} \times \mathcal{L}}{N'_{\text{gen}}},$$
(3.1)

где  $\sigma$  — сечение рождения;  $\mathcal{B}$ — вероятность распада;  $k_{\text{factor}}$ — отношение сечений процессов, вычисленных в NLO или NNLO к сечению, вычисляемому непосредственно генератором (LO);  $\epsilon_{\text{filter}}$ — эффективность критериев отбора событий, наложенных на уровне генератора;  $\mathcal{L}$  — полная интегральная светимость данных, используемых в анализе;  $N'_{\text{gen}} = \sum_{m=1}^{N_{\text{gen}}} w_m$  — сумма весов событий генератора. Генератор MC@NLO моделирует события с весами  $w_m = \pm 1$ , события в наборах данных SHERPA имеют генераторные веса в диапазоне 0.1–1, все остальные генераторы моделируют события в приближении LO с весами, равными 1.

Неточности моделирования инструментальных эффектов компенсируются умножением веса событий  $w_i^{\text{theory}}$  на произведение поправочных коэффициентов  $SF_k$ , назначаемых индивидуальным реконструированным объектам, и веса  $w_i^{\text{pile-up}}$ , корректирующего распределение pile-up в смоделированных данных (Раздел 3.5), и описываются полным весом события,  $w_i^{\text{total}}$ , представленным в Уравнении 3.2:

$$w_i^{\text{total}} = w_i^{\text{theory}} \times \prod_k \text{SF}_k \times w_i^{\text{pile-up}}.$$
 (3.2)

Поправочные коэффициенты SF обсуждаются ниже в Разделе 4.3).

# Первичные условия отбора событий

В поисках возбужденных электронов (EL) и дибозонных резонансов (VV) конечными объектами, составляющими искомые конечные состояния, являются реконструированные электроны, мюоны, струи и потерянная поперечная энергия. Условия отбора реконструированных объектов описаны в Разделе 4.1. Вводятся две категории отобранных объектов: *начальный* с ослабленными условиями отбора и *конечный* с более жесткими условиями отбора. Разделение на эти две категории необходимо для корректного устранения двойного счета как между отдельными реконструированными объектами в одном событии, так и между событиями, отбираемыми для анализа в разных конечных состояниях. Последнее необходимо, так как результаты данных поисков комбинируются с результатами, полученными в других конечных состояниях на одних и тех же исходных данных. Далее, *первичный*<sup>1</sup> отбор событий для анализов производится на основе отобранных *конечных* объектов. *Первичные* условия отбора событий и их последовательность перечислены в Разделе 4.2.

## 4.1. Отбор объектов

Условия отбора *начальных* и *конечных* объектов перечислены в Таблице 4.1 для поисков VV и EL, которые обсуждаются подробнее в Разделах 4.1.1– 4.1.6.

<sup>&</sup>lt;sup>1</sup> Не путать *первичный* отбор событий, поверх которого производится оптимизация сигнальных, контрольных и проверочных областей (Глава 6), и *конечные* отборы объектов, комбинация которых определяет *первичный* отбор событий.

Таблица 4.1. Отбор *начальных* и *конечных* объектов в анализах VV и EL. *Конечные* условия накладываются поверх *начальных*.

| Тип отбора | Объекты                | VV                                                           | EL                                      |
|------------|------------------------|--------------------------------------------------------------|-----------------------------------------|
|            |                        | $ n  < 2.47$ . KDOME $\{1.37: 1.52\}$                        |                                         |
|            | Электроны              | $p_{\rm T}>20~\Gamma$ əB                                     | $p_{\rm T} > 40 \ \Gamma \Rightarrow B$ |
|            |                        | medium id                                                    | loose id                                |
|            |                        | $p_{\rm T}^{\rm cone0.2}/p_{\rm T} < 0.15$                   |                                         |
|            |                        | $\frac{ d_0 }{\sigma_d} < 6$                                 | $ d_0 /\sigma_{d_1} < 5$                |
|            |                        | $ z_0 \sin \theta  < 2$ MM                                   | $ z_0 \sin \theta  < 0.5 \text{ mm}$    |
|            | й Мюоны                | n  < 2.5                                                     |                                         |
| Начальный  |                        | $m_{ m m} > 20 \ \Gamma_{ m PB}$                             | $n_{ m TT} > 40 \ \Gamma_{ m P} { m R}$ |
|            |                        | $p_1 > 2010 D$<br>Качество ID трека $(a/n)_{\text{сin}} < 5$ | $p_{T} > 10 + 3D$<br>medium id          |
|            |                        | $n_{\rm cone0.2}/n_{\rm T} < 0.15$                           | loose uug TDekob                        |
|            |                        | $\frac{p_{\Gamma}}{ d_{0} /\sigma_{L}} < 3.5$                | $ d_0 /\sigma_d < 3$                    |
|            |                        | $ z_0  = \frac{ z_0 }{ z_0 } \leq \frac{1}{2} \text{ MM}$    | $ z_0 \sin \theta  < 0.5 \text{ MM}$    |
|            |                        |                                                              |                                         |
|            | Струи                  | AntiKt4                                                      |                                         |
|            |                        | $p_{\rm T} > 30.1{ m sB}, \  \eta  < 2.8$                    | $p_{\rm T} > 20.1$ 9B                   |
|            |                        | JVF                                                          | JVT                                     |
|            |                        | $p_{ m T}>25$ ГэВ                                            | $p_{ m T} > 65~ \Gamma$ эВ              |
|            | Электроны              | tight id                                                     |                                         |
|            |                        | $E_{\mathrm{T}}^{\mathrm{cone0.2}}/E_{\mathrm{T}} < 0.14$    | loose                                   |
|            |                        | $ z_0\sin	heta  < 0.5$ мм                                    | $ z_0 \sin \theta  < 0.5$ MM            |
|            |                        | $p_{ m T}>25$ ГэВ                                            |                                         |
|            | Мюоны                  | $E_{\rm T}^{\rm cone0.2}/E_{\rm T} < 0.14$                   |                                         |
| Конечный   |                        | $ z_0 \sin \theta  < 0.5$ MM                                 |                                         |
|            | Струи                  | CA12                                                         | AntiKt10                                |
|            |                        | $p_{ m T}>400\ \Gamma$ эВ                                    | $p_{ m T}>200$ ГэВ                      |
|            |                        | $ \eta  < 2, \sqrt{y_{\rm f}} > 0.45$                        | $ \eta  < 2$                            |
|            | 1                      | начальные AntiKt4 струи, $ \eta $                            | $  < 2.5, p_{\rm T} > 20$ ГэВ           |
|            | о-струи                | MV1, $70\%$ , JVF                                            | MV2, 77%, JVT                           |
|            | $E_{\rm T}^{\rm miss}$ | откалиброванные объекты $(e, \mu)$                           | , $j$ ) и TST компонента                |

#### 4.1.1. Электроны

Отбор электронов производится с помощью четырех последовательных процедур: *реконструкции*, *идентификации*, *изоляции* и *ассоциации* с вершиной жесткого взаимодействия.

Реконструкция кандидатов в электроны выполняется по энергетическим кластерам в электромагнитном калориметре (EM), которые должны быть связаны с треками во внутреннем детекторе (ID). Рассматриваются только электроны внутри апертуры ID с  $|\eta| < 2.47$ , исключая переходную область между центральной и торцевой частями калориметра 1.37 <  $|\eta| < 1.52$ . Вначале выполняется поиск энергетических всплесков в ячейках калориметра внутри конусов размером  $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ , что обусловлено размерами ячеек среднего слоя ЕМ-калориметра. Далее выбираются калориметрические башни с полной поперечной энергией  $E_{\rm T} > 2.5$  ГэВ, состоящие из трех ячеек (из переднего, среднего и заднего слоев калориметра). Для реконструкции ID-треков используется специальный алгоритм распознавания: если трек с поперечным импульсом  $p_{\rm T} > 1$  ГэВ пересекает 3 различных слоя кремниевого детектора (SCT) и не может быть дополнен до полного трека с  $\geq 7$  пересечений в пионной гипотезе, и, при этом, этот трек связан с каким-либо калориметрическим кластером в пределах конуса с  $\Delta R < 0.3$ , то алгоритм перезапускается для электронной гипотезы. При вычислении параметров трека электрона также учитывается синхротронное излучение с возможностью потери до 30% энергии при каждом взаимодействии трека с материалом внутреннего детектора. Отобранные кластеры в ЕМ-калориметре, ассоциированные с реконструированными электронными треками, образуют кандидаты в электроны. Если калориметрический кластер связан с несколькими треками, то выбирается «первичный» трек, исходя из числа пересечений в ID и  $\Delta R$  между направлением трека в перигее и калориметрическим кластером [96; 97]. В завершение, импульс электрона калибруется, чтобы учесть потери энергии в материале до ЕМ-калориметра и погрешности оценки
энергии кластера [98; 99].

Идентификация (id) кандидатов в электроны необходима для отделения истинных электронов от фоновых кандидатов в электроны, происходящих из адронных струй или конверсии фотонов в электрон-позитронные пары. Кандидаты в электроны характеризуются различными параметрами, такими как форма электромагнитного ливня, отклик детектора переходного излучения (TRT), трек-кластер ассоциирование, свойства трека и другие. Для этих параметров вычисляются идентификационные критерии loose id, medium id и tight id в порядке увеличения доли истинных и уменьшения доли фоновых электронов в отобранном по данному критерию наборе кандидатов в электроны. Электроны, удовлетворяющие критерию *tight id*, всегда удовлетворяют критерию medium id, которые, в свою очередь, удовлетворяют критерию loose id. Эффективность идентификации loose id для истинных электронов с  $p_{\rm T} > 30(20)$  ГэВ достигает примерно 95% для анализа EL (VV), medium id для электронов с  $p_{\rm T} > 30(20)$  ГэВ — более 90% (80%) для анализа EL (VV), а *tight id* для электронов с  $p_{\rm T} > 65(25)$  ГэВ — более 85% (70%) для анализа EL (VV) [96; 97]. В качестве начальных отбирались электроны medium id с  $p_{\rm T}$  > 20 ГэВ для анализа VV и электроны loose id с $p_{\rm T}>40$ ГэВ для анализа EL, а в качестве конечных — электроны tight id с  $p_{\rm T} > 25$  ГэВ и с  $p_{\rm T} > 65$  ГэВ для анализов VV и EL, соответственно.

Дальнейшее выделение истинных и фоновых электронов из кандидатов в электроны осуществляется с помощью наложения условий *изоляции* треков во внутреннем детекторе (ID) и кластеров в EM-калориметре. В качестве электронов могут быть идентифицированы фотоны из распадов адронов или легкие заряженные адроны. В обоих случаях вокруг таких объектов наблюдаются адронные ливни. Для трековой изоляции в ID вводится переменная  $p_{\rm T}^{\rm cone0.2}$ , определенная как суммарная поперечная энергия  $\Sigma p_{\rm T}$  всех треков с  $p_{\rm T} > 1$  ГэВ, ассоциированных с вершиной рождения рассматриваемого электронного трека, находящихся внутри описанного вокруг его направления конуса с  $\Delta R =$   $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = \min(0.2, 10 \ \Gamma \ni B/p_T^e)$ , за вычетом  $p_T$  самого трека. Для калориметрической изоляции используется переменная  $E_T^{\text{cone0.2}}$ , вычисленная как суммарная поперечная энергия  $\Sigma E_T$  всех калориметрических кластеров внутри конуса с  $\Delta R = 0.2$ , описанного вокруг центра рассматриваемого кластера, за вычетом  $E_T$  этого кластера. В поиске дибозонных резонансов для начального отбора электронов накладывается только требование к трековой изоляции, то есть  $p_T^{\text{cone0.2}}$  должен составлять не более 15% от поперечного импульса трека электрона,  $p_T^{\text{cone0.2}}/p_T < 0.15$ . Для конечного отбора электронов к трековой изоляции, то есть  $p_T^{\text{cone0.2}}/p_T < 0.15$ . Для конечного отбора электронов к трековой изоляции, то есть  $p_T^{\text{cone0.2}}/p_T < 0.15$ . Для конечного отбора электронов к трековой изоляции добавляется требование на калориметрическую изоляцию электрона  $E_T^{\text{cone0.2}}/E_T < 0.14$  [96]. В поиске возбужденных электронов для начального отбора требования на изоляцию не накладываются, а для конечного требуется изоляция *loose*, которая определяется комбинацией условий отбора на переменные  $p_T^{\text{cone0.2}}/p_T$  и  $E_T^{\text{cone0.2}}/E_T$ , при которой эффективность отбора сигнальных электронов достигает 99% [97].

Сигнальный электрон должен быть *ассоциирован* с вершиной жесткого взаимодействия. Для этого применяются ограничения на поперечный  $(d_0)$  и продольный  $(z_0)$  параметры трека электрона. Условия как для *начального*, так и для *конечного* отбора на поперечный и продольный параметр —  $|d_0|/\sigma_{d_0} < 5$  и  $|z_0 \sin \theta| < 0.5$  мм для анализа EL, где  $\sigma_{d_0}$  — неопределенность  $d_0$ . Для анализа VV  $|d_0|/\sigma_{d_0} < 6$  для обоих типов отбора электронов, а  $|z_0 \sin \theta| < 2(0.5)$  мм для *начального* (*конечного*) отбора электронов.

### 4.1.2. Мюоны

Аналогично отбору электронов в Разделе 4.1.1, отбор мюонов производится с помощью процедур *реконструкции*, *идентификации*, *изоляции* и *accoциации* с вершиной жесткого взаимодействия.

*Реконструкция* кандидатов в мюоны производится по независимо реконструированным трекам во внутреннем детекторе (ID) и мюонном спектрометре (MS) и их дальнейшей комбинации друг с другом (CB-мюоны). Мюонные ID-треки реконструируются стандартным алгоритмом, используемым для любых заряженных частиц в ATLAS [100]. При реконструкции MS-треков производится поиск сегментов, то есть последовательных взаимодействий мюонов со слоями мюонных камер, которые располагаются на одной линии в изогнутой плоскости. Сегменты ранжируются по количеству взаимодействий мюонов со спектрометром, по качеству их фита. Для формирования MS-трека необходимы как минимум два ассоциированных сегмента в разных слоях мюонного спектрометра, за исключением переходной области между центральной и торцевой частью спектрометра, где требуется только один сегмент. Если сегменты связаны с несколькими треками, то производят последовательную процедуру удаления такого перекрытия. Треки, состоящие из трех сегментов в разных слоях спектрометра, записываются как отдельные, если хотя бы один сегмент в каждом из них не связан с другим треком. Если же все три сегмента треков имеют идентичные наборы взаимодействий мюонов с детектором, то записывается единый трек. Далее, для формирования комбинированного мюонного трека MS-треки экстраполируются во внутренний детектор и ассоциируются с ID-треками, после чего производится глобальный  $\chi^2$  фит с возможным удалением или прибавлением взаимодействий в MS для улучшения качества фита. Оставшиеся ID-треки экстраполируются в мюонный спектрометр, и, если находятся подходящие MS треки, то комбинируются в треки мюонных кандидатов. Далее производится калибровка поперечных импульсов смоделированных мюонов, реконструированных в ID и MS, то есть коррекция этих величин для их точного описания в реальных данных [101; 102].

Процедура *идентификации* (*id*) мюонов из реконструированных кандидатов в мюоны производится для разделения сигнальных мюонов и фоновых, большинство из которых рождаются в распадах долгоживущих заряженных адронов. Треки таких мюонов характеризуются наличием изгиба в ID части. Такой же эффект наблюдается и для сигнальных мюонов, рассеянных на материале детектора, что приводит к недостоверному измерению их импульса. Для идентификации сигнальных мюонов используются следующие дискриминирующие переменные:

значимость (q/p)<sub>sig</sub> = <sup>|(q/p)<sub>MS</sub>-(q/p)<sub>ID</sub>|</sup><sub>σ</sub>, где q и p — заряд и импульс, измеренные в ID и MS, с неопределенностью σ;

$$\bullet \ \ \frac{|p_{\rm T}^{\rm MS} - p_{\rm T}^{\rm ID}|}{p_{\rm T}^{\rm CB}};$$

- $\chi^2$  глобального фита комбинированного трека;
- качество ID-трека: число взаимодействий ≥ 1 в пиксельном и ≥ 5 в детекторе SCT, число дырок<sup>2</sup> ≤ 3 суммарно в пиксельном и детекторе SCT, ≥ 10% взаимодействий с детектором TRT внутри апертуры TRT с 0.1 < |η| < 0.9 включены в финальный фит.</li>

В анализе VV отбирались мюоны с качеством ID-трека, указанным выше, и значимостью  $(q/p)_{sig} < 5$  с  $|\eta| < 2.5$  и  $p_T > 20(25)$  ГэВ для начального (конечного) отбора [101]. Для данных Run II, по аналогии с идентификацией электрона, в соответствии с выше перечисленными дискриминирующими переменными определены четыре типа идентификационных критериев: loose id, medium id, tight id и high-p<sub>T</sub> id. Первые три категории введены таким образом, что мюоны, удовлетворяющие tight id всегда удовлетворяют medium id, a последние удовлетворяют loose id. Категория high-p<sub>T</sub> id оптимизирована для мюонов с  $p_T > 100$  ГэВ и в данных анализах не применялась. Все категории оптимизированы так, чтобы минимизировать систематические неопределенности реконструкции и калибровки мюона. Категории loose id и medium id идентичны для комбинированного CB-мюона. Для подавления адронных фоновых событий в них требуется значимость  $(q/p)_{sig} < 7$ . Эффективность идентификации medium id сигнальных мюонов с  $p_T > 20$  ГэВ превышает 96% и достигает 0.2% для фоновых мюонов [102]. Для отбора *начальных* мюонов в анализе EL требовалась идентификации.

<sup>&</sup>lt;sup>2</sup> Дырка — это пропущенное взаимодействие в активном сенсоре, находящееся между двумя взаимодействиями на треке

кация medium id для мюонов с  $p_{\rm T} > 40$  ГэВ и  $|\eta| < 2.5$ . Конечный отбор мюонов в анализе EL не применяется.

Описанные выше критерии хорошо отделяют сигнальные мюоны из электрослабых распадов тяжелых частиц, например, W- и Z-бозонов, от кандидатов в мюоны из распадов долгоживущих заряженных адронов, но не от мюонов из распадов короткоживущих адронов, которые окружены адронными ливнями. Для изоляции мюонов, по аналогии с электронами (Раздел 4.1.1), применяются трековая и калориметрическая изоляции. В поиске дибозонных резонансов для начального отбора мюонов требуется только трековая изоляция  $p_{\rm T}^{\rm cone0.2}/p_{\rm T} < 0.15$ , а для конечного добавляется калориметрическая изоляция  $E_{\rm T}^{\rm cone0.2}/E_{\rm T} < 0.14$  [101]. В поиске возбужденных электронов в отбор начальных мюонов включено требование loose только на трековую изоляцию, определяемую дискриминирующей переменной  $p_{\rm T}^{\rm cone0.3}/p_{\rm T}$  с  $\Delta R = \min(0.3, 10 \ \Gamma \Rightarrow B/p_{\rm T}^{\mu})$ , эффективность которой составляет 99% для мюона с любым  $p_{\rm T}$  и  $\eta$  [102]. Конечный отбор мюонов в анализе EL не применяется.

Для ассоциации сигнального мюона с вершиной жесткого взаимодействия накладываются ограничения на  $d_0$  и  $z_0$  параметры (Раздел 4.1.1) мюонного ID трека. В VV анализе как для начального, так и для конечного отбора мюонов  $|d_0|/\sigma_{d_0} < 3.5$ , а  $|z_0 \sin \theta| < 2(0.5)$  мм для начального (конечного) отбора мюонов. В EL анализе для начального мюона критерии отбора —  $|d_0|/\sigma_{d_0} < 3$  и  $|z_0 \sin \theta| < 0.5$  мм; конечный отбор мюонов не применяется.

### 4.1.3. Струи

Адронные струи реконструируются из кластеров в электромагнитном калориметре. В качестве разрешенных струй из адронного распада *W*-бозона использовались струи *AntiKt4EMTopoJets* с  $p_{\rm T} > 20$  ГэВ в поиске возбужденных электронов и *AntiKt4LCTopoJets* с  $p_{\rm T} > 30$  ГэВ и  $|\eta| < 2.8$  в поиске дибозонных резонансов, реконструированные из топологических кластеров в электромагнитном калориметре с помощью алгоритма anti- $k_t$  [103] с радиусом струи R = 0.4.

Калибровка струй AntiKt4 описана в работе [104].

Для подавления вклада струй, происходящих из pile-up в поиске возбужденных электронов, разрешенные струи AntiKt4 с  $|\eta| < 2.4$  и  $p_{\rm T} < 60$  ГэВ удаляются из события с использованием алгоритма мечения струй, происходящих из первичной вершины (JVT) [105]. В поиске дибозонных резонансов удаляются струи AntiKt4 с  $|\eta| < 2.4$  и  $p_{\rm T} < 50$  ГэВ, если JVF < 0.5, где JVF — отношение суммарного  $p_{\rm T}$  треков, ассоциированных со струей и первичной вершиной, к суммарному  $p_{\rm T}$  всех треков, ассоциированных со струей.

В поиске возбужденных электронов для реконструкции тяжелых коллимированных струй от распадов быстрых W-бозонов использовались струи с  $p_{\rm T} > 200$  ГэВ и  $|\eta| < 2.0$ , реконструированные алгоритмом anti- $k_t$  с радиусом струи R = 1.0 (AntiKt10LCTopoJets) на электромагнитной шкале и затем откалиброванные с использованием процедуры локального перевзвешивания энергии кластера (LCW) [106]. Чтобы уменьшить вклад pile-up и сопутствующих событий, коллимированные струи очищаются с помощью алгоритма тримминга [107], при котором струя разбивается на струи, реконструированные алгоритмом  $k_t$  с радиусом  $R_{\rm sub} = 0.2$ , и отбрасываются те из них, которые несут долю  $p_{\rm T}$  коллимированной струи  $f_{\rm cut} < 5\%$ .

В поиске дибозонных резонансов для реконструкции коллимированных струй *CA12LCTopoJets* использовался алгоритм Кембридж–Ахен [108] с радиусом струи R = 1.2. Для подавления вклада струй рожденных не в первичной вершине, требуется условие на баланс поперечного импульса  $\sqrt{y_{\rm f}} > 0.45$ , где  $\sqrt{y_{\rm f}} = \min(p_{\rm T}^{j1}, p_{\rm T}^{j2}) \Delta R_{12}/m_{12}$ . Кроме того, на коллимированную струю накладывается требование с  $p_{\rm T} > 400$  ГэВ и  $|\eta| < 2.0$ .

#### 4.1.4. *b*-струи

Одним из главных фоновых процессов в поисках возбужденных электронов и дибозонных резонансов является, как показано далее в Главе 5, процесс рождения пары  $t\bar{t}$ . Чтобы уменьшить вклад этого фонового процесса, необходимо идентифицировать струи, содержащие *b*-кварки. Идентификация *b*-струй производится с помощью мультивариативного метода мечения *b*-струй, который позволяет вычислить эффективность идентификации *b*-струй из смоделированного набора данных  $t\bar{t}$  и вероятность некорректной идентификации струй, содержащих *c*-кварки или легкие партоны (*u*-, *d*-, *s*-кварки или глюоны *g*) в качестве *b*-струй. Алгоритм мечения основан на входных параметрах треков внутри конуса струи, такие как  $p_{\rm T}$  и  $\eta$ , и расположении вершины вторичного распада [109].

Для откалиброванных струй с R = 0.4 (AntiKt4LCTopoJets в анализе VV и AntiKt4EMTopoJets в анализе EL) в апертуре  $|\eta| < 2.5$  с  $p_{\rm T} > 20$  ГэВ и условиями отбора на JVF и JVT (описанными в Разделе 4.1.3) для анализов VV и EL, соответственно, *b*-струи идентифицируются с помощью алгоритма MV1 [110] (MV2 [111]) с эффективностью 70% [110] (77% [112]) в анализе VV (EL). Эффективность ложной идентификации струй легких партонов как *b*-струй составляет менее 1%.

### 4.1.5. Мечение *W*-бозонов в поиске возбужденных электронов

В поиске возбужденных электронов на данных, полученных в Run II, для разделения коллимированных (*AntiKt10LCTopoJets*) струй из адронных распадов *W*-бозонов и из рождения в жестких взаимодействиях, используется метод мечения *W*-бозонов с помощью комбинированной массы коллимированной струи ( $m^{\text{comb}}$ ) и структурной функции струи  $D_2^{\beta=1}$  [113; 114].

В Уравнении 4.1 представлена комбинированная масса бустированной струи $m^{\rm comb}$  :

$$m^{\text{comb}} = \omega^{\text{calo}} \times m^{\text{calo}} + \omega^{\text{TA}} \times m^{\text{TA}}.$$
(4.1)

Масса, вычисленная в калориметре,  $m^{calo}$ , для струи большого радиуса с энергией  $E_i$  и импульсом  $\vec{p_i}$  ( $|\vec{p_i}| = E_i$ ) *i*-ого калориметрического кластера струи определяется Уравнением 4.2:

$$m^{\text{calo}} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} \vec{p_{i}}\right)^{2}}.$$
(4.2)

Масса струи, вычисленная по информации из трековой системы и калориметра,  $m^{\mathrm{TA}}$ , задается Уравнением 4.3:

$$m^{\rm TA} = \frac{p_{\rm T}^{\rm calo}}{p_{\rm T}^{\rm track}} \times m^{\rm track}, \qquad (4.3)$$

где  $p_{\rm T}^{\rm calo}$  — измеренный поперечный импульс калориметрической струи большого радиуса,  $p_{\rm T}^{\rm track}$  — поперечный импульс суммарного четырехвектора треков, ассоциированных с рассматриваемой струей, и  $m^{\rm track}$  — инвариантная масса этого четырехвектора. Веса  $\omega^{\rm calo}$  и  $\omega^{\rm TA}$  обратно пропорциональны квадратам разрешений калориметрической и трековой масс струи, соответственно:

$$\omega^{\text{calo}} = \frac{\sigma_{\text{calo}}^{-2}}{\sigma_{\text{calo}}^{-2} + \sigma_{\text{TA}}^{-2}} , \quad \omega^{\text{TA}} = \frac{\sigma_{\text{TA}}^{-2}}{\sigma_{\text{calo}}^{-2} + \sigma_{\text{TA}}^{-2}}.$$
 (4.4)

Структурная функция  $D_2^{\beta=1}$ , определенная Уравнением 4.5, является отношением трехчастичной и двухчастичной корреляционных функций энергии  $(E_{CF})$ , и наиболее чувствительна к коллимированным струям, состоящим из двух струй малого радиуса, для которых  $D_2^{\beta=1}$  стремится к нулю:

$$D_2^{\beta=1} = E_{CF3} \times \left(\frac{E_{CF1}}{E_{CF2}}\right)^3. \tag{4.5}$$

Функций  $E_{CF}$ , в свою очередь, зависят от поперечных импульсов и попарных  $\Delta R$  между структурными составляющими коллимированной струи:

$$E_{CF1} = \sum_{i} p_{\mathrm{T},i};$$
$$E_{CF2} = \sum_{ij} p_{\mathrm{T},i} p_{\mathrm{T},j} \Delta R_{ij};$$
$$E_{CF3} = \sum_{ijk} p_{\mathrm{T},i} p_{\mathrm{T},j} p_{\mathrm{T},k} \Delta R_{ij} \Delta R_{jk} \Delta R_{ki}.$$

После калибровки энергии (JES) и массы (JMS) коллимированной струи, струя помечается как кандидат в W-бозон, если ее масса  $(m_J)$  попадает в массовое окно вокруг массы W-бозона  $(m_W)$  и  $D_2^{\beta=1}$  достаточно мала. Этот метод оптимизирован для струй в кинематической области с 200 <  $p_T^J$  < 2500 ГэВ и  $|\eta| < 2.0.$ 

В анализе EL используется метод мечения W-бозонов с сигнальной эффективностью и фактором удаления фона  $(1/\epsilon)$ , равными 50% и 60–80 ("W-tag50") и 80% и 10–15 ("W-tag80"), для достижения которых оптимизируются условия отбора на двусторонний интервал по массе струи и ограничение сверху на  $D_2^{\beta=1}$ , зависящие от  $p_{\rm T}$  струи [115; 116]. При этом, критерии отбора по  $m_J$  и  $D_2^{\beta=1}$  для W-tag50 являются более строгими, чем для W-tag80, и, соответственно, включены в последние.

#### 4.1.6. Потерянный поперечный импульс

Нейтрино не может быть непосредственно зарегистрировано детектором ATLAS, поэтому оно реконструируется в событии как недостающая энергия. Кроме того, потерянную энергию возможно восстановить только в поперечной плоскости xy, так как теряется информация о частицах, двигающихся в продольном направлении в области трубы LHC. Потерянный поперечный импульс, модуль которого равен потерянной поперечной энергии ( $E_{\rm T}^{\rm miss}$ ), вычисляется как взятый с обратным знаком суммарный вектор всех реконструированных объектов, которые ассоциированы с первичной вершиной. К последним, в нашем случае, относятся все участвующие в отборе жесткие объекты, то есть высокоэнергетические откалиброванные электроны, мюоны и струи. Вклад других объектов, фотонов ( $\gamma$ ),  $\tau$ -лептонов, учитывается мягкой компонентой (TST), включающей в себя треки частиц, реконструированных во внутреннем детекторе (ID), ассоциированных с энергетическими кластерами в калориметре, но не ассоциированных ни с одним из реконструированных жестких объектов. Для учета pile-up, в мягкую компоненту входят только ID-треки, ассоциированные с первичной вершиной.<sup>3</sup> В Уравнении 4.6 представлены компоненты x и y потерянной энергии для общего случая:

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\mu} + E_{x(y)}^{\text{miss},j} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss},\text{TST}}.$$
(4.6)

Так как в поисках возбужденных электронов (EL) и дибозонных резонансов (VV) конечными объектами, составляющими событие, являются электроны, мюоны и струи, то реконструированные изолированные фотоны и  $\tau$ -лептоны не используются напрямую, а частично включаются в компоненту TST, и Уравнение 4.6 трансформинуется в Уравнение 4.7:

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\mu} + E_{x(y)}^{\text{miss},j} + E_{x(y)}^{\text{miss},\text{TST}}.$$
(4.7)

Реконструкция потерянной поперечной энергии производится по откалиброванным электронам, мюонам и струям R = 0.4 (*AntiKt4EMTopoJets* для анализа VV и *AntiKt4LCTopoJets* для анализа EL), а мягкая компонента TST строится по трекам с  $p_{\rm T} > 400$  МэВ для анализа EL [117] и анализа VV [118]. Кроме того, учитывается перекрытие между треками и калориметрическими кластерами, ассоциированными с жесткими объектами:

- удаляются треки, находящиеся в описанном вокруг электрона конусе с $\Delta R < 0.05;$
- удаляются треки, ассоциированные с мюоном;
- удаляются треки, ассоциированные со струями.

<sup>3</sup> При таком построении полного поперечного импульса, не ассоциированного с жесткими объектами, теряется вклад изолированных фотонов и мягких нейтральных адронов. Однако, легко видеть, что в сигнальных событиях их вклад, включаемый в систематическую неопределенность много меньше вклада всех не ассоциированных с жесткими объектами нейтральных частиц, который логично можно было бы оценить по выделению энергии в калориметре. Большая часть таких частиц рождается во взаимодействиях pile-up, и не может быть исключена из-за отсутствия треков, указывающих на вершину рождения.

### 4.2. Первичный отбор событий

Набранные данные делятся по временным периодам (LB<sup>4</sup>), приблизительно равным 1 мин, характеризующимся стабильными параметрами пучка протонов и стабильным и корректным состоянием работы всех подсистем детектора ATLAS [119—122]. Но даже хорошие LB могут содержать отдельные события, информация о которых записана в моменты некорректной работы электромагнитного (LAr) или адронного (TileCal) калориметров или трековой системы (SCT) внутреннего детектора или пострадала из-за случайных вспышек шума в LAr. Такие события удаляются из рассмотрения.

Отобранные события должны иметь первичную вершину (PV, Раздел 3.1) с как минимум тремя ассоциированными треками для анализа VV и двумя для анализа EL с поперечными импульсами  $p_{\rm T} > 400$  МэВ каждый. Это условие уменьшает вклад космических лучей и других фоновых частиц, происходящих не из столкновений пучков протонов.

Двойной счет объектов, электронов, мюонов и струй, реконструированных с помощью более одного лептонного или струйного алгоритма, а также некорректная реконструкция реальных физических объектов, рожденных в непосредственной близости друг от друга устраняются с помощью процедуры удаления перекрытия. В поиске возбужденных электронов эта процедура применяется в первую очередь к *начальным* объектам (электронам, мюонам и струям) в следующем порядке:

- электрон–электрон: если два электрона имеют один ID-трек, то удаляется электрон с более низким качеством идентификации, если же качество обоих электронов одинаковое, то удаляется электрон с меньшим *p*<sub>T</sub>;
- электрон–мюон: если электрон и мюон имеют один ID-трек, то удаляется электрон;

<sup>&</sup>lt;sup>4</sup> Luminosity blocks

- электрон-струя (AntiKt4EMTopoJets): если ΔR(e, j) < 0.2, то удаляется струя, далее для оставшихся струй, которые не являются b-струями, процедура повторяется, и удаляются электроны с ΔR(e, j) < 0.4;</li>
- мюон-струя (AntiKt4EMTopoJets): если ΔR(μ, j) < 0.2 и струя имеет меньше трех ID-треков, ассоциированных с вершиной рождения мюона, то удаляется струя, далее для оставшихся струй, которые не являются b-струями, процедура повторяется, и удаляются мюоны с ΔR(μ, j) < 0.4.</li>

Далее процедура удаления перекрытия выполняется для *начальных* электронов и *конечных* коллимированных струй:

электрон–струя (AntiKt10LCTopoJets): если ΔR(e, J) < 0.1, то удаляется коллимированная струя.</li>

Для поиска дибозонных резонансов процедура удаления перекрытия выполняется для *начальных* объектов (электронов, мюонов) и *конечных* объектов (коллимированных и разрешенных струй):

- электрон–электрон: если два электрона имеют один ID-трек, то удаляется электрон с более низким качеством идентификации, если же качество обоих электронов одинаковое, то удаляется электрон с меньшим *p*<sub>T</sub>;
- электрон–мюон: если  $\Delta R(e, \mu) < 0.1$ , то удаляется электрон;
- электрон–струя (AntiKt4LCTopoJets): если  $\Delta R(e, j) < 0.3$ , то удаляется струя;
- электрон–струя (*CA12LCTopoJets*): если *ΔR*(*e*, *J*) < 0.8, то удаляется коллимированная струя.

Для удаления фоновых событий, в которых источником струй является не столкновения протонов, а например, рассеяние протонов вне области пересечения пучков, космические лучи, когерентный шум в калориметре или спонтанные всплески шума в LAr, необходимо идентифицировать некачественные струи. Струя идентифицируется как некачественная (*LooseBad*), если выполняется одно из условий:

- основная часть энергии струи попала в ячейку калориметра с повышенным уровнем шума;
- малая часть энергии зафиксирована калориметром;
- ID-треки ассоциированы с малой долей энергетических кластеров струи.

В анализе EL удаляются события с некачественными (*LooseBad*) струями *AntiKt4* [123], если некачественная струя удовлетворяет одному из условий:

- струя имеет  $20 < p_{\rm T} < 60$  ГэВ и  $|\eta| < 2.4$  и удовлетворяет условию JVT;
- струя имеет  $|\eta| < 2.4$  и не удовлетворяет условию JVT;
- струя имеет  $p_{\rm T} > 60$  ГэВ и  $|\eta| < 2.8$ .

Эффективность идентификации некачественных струй по критерию LooseBad составляет 99.5% для  $p_{\rm T}^j > 20$  ГэВ и 99.9% для  $p_{\rm T}^j > 100$  ГэВ.

В анализе VV удаляются события с некачественными (*LooseBad*) струями *AntiKt4*, если некачественная струя удовлетворяет условиям:

•  $p_{\rm T} > 20$  ГэВ,  $|\eta| < 4.5$  и JVF.

Для поиска возбужденных электронов в событии требуется наличие хотя бы одной конечной коллимированной струи (AntiKt10LCTopoJets), а для поиска дибозонных резонансов — как минимум двух конечных разрешенных струй (AntiKt4LCTopoJets) или как минимум одной конечной коллимированной струи (CA12LCTopoJets). В соответствии с конечными состояниями в поисках возбужденных электронов и дибозонных резонансов, в событиях требуется наличие ровно одного конечного лептона,  $n_e^{\text{final}} = 1$  в анализе EL и  $n_e^{\text{final}} + n_{\mu}^{\text{final}} = 1$  в анализе VV, и ни одного дополнительного начального лептона,  $n_e^{\text{base}} + n_{\mu}^{\text{base}} = 0$ , в обоих анализах. Таким образом, можно выделить события, относящиеся к электронному и мюонному (последнее только в анализе VV) конечным состояниям.

Триггеры, используемые в обоих анализах, обсуждались в Разделе 3.1. Для правильного применения поправки эффективности триггеров посредством поправочных коэффициентов (SF, которые обсуждаются далее в Разделе 4.3) в смоделированных наборах данных требуется, чтобы отобранный *конечный* лептон (электрон в анализе EL и электрон или мюон в анализе VV) совпадал с лептоном, реконструированным на уровне HLT и вызвавшим срабатывание триггера, используемого для отбора события. Данное требование применяется как к экспериментальным, так и смоделированным данным.

Одним из значимых фоновых процессов для анализа EL является фон ложных лептонов, происходящих из некорректно идентифицированных струй, конверсий фотонов в материале детектора или от электронов из распадов адронов, идентифицированных в качестве сигнальных электронов (Глава 5). Так как вклад этих процессов оценивается из данных для исключения его двойного учета, в смоделированных наборах данных все отобранные электроны должны соответствовать пряморожденным электронам на уровне генератора. Не удовлетворяющие этому условию смоделированные события удаляются.

В поиске возбужденных электронов на события накладывается требование на потерянную поперечную энергию,  $E_{\rm T}^{\rm miss} > 100$  ГэВ, для подавления вклада фоновых процессов  $W(\rightarrow \ell \nu) + jets$  ( $E_{\rm T}^{\rm miss} \lesssim m_W/2$ ), Дрелла-Ян ( $E_{\rm T}^{\rm miss} \sim 0$ ) и событий с ложно идентифицированными лептонами. Как будет показано в Главе 5, наложение такого условия на  $E_{\rm T}^{\rm miss}$  приводит к значительному подавлению вклада этих процессов. Кроме того, на инвариантную массу *конечной* коллимированной струи накладывается условие  $m_J^{\rm final} > 50$  ГэВ, причем струя должна удовлетворять критерию мечения W-tag50, включающему ограничение сверху на  $D_2^{\beta=1}$ , но не включающему дополнительных требований на  $m_J$ .

Для поиска дибозонных резонансов на уровне *переичного* отбора включается только дополнительное требование  $E_{\rm T}^{\rm miss} > 30$  ГэВ. Основные критерии и последовательность их применения для *первичного* отбора событий в поиске дибозонных резонансов и возбужденных электронов перечислены в Таблице 4.2.

Таблица 4.2. Последовательность *первичных* отборов событий в поисках VV и EL. *W*-tag50 соответствует мечению коллимированной струи как *W*-бозон с эффективностью 50%.

|                           | VV                                                                       | EL                                      |  |  |
|---------------------------|--------------------------------------------------------------------------|-----------------------------------------|--|--|
| V                         | между начальными е, µ и                                                  |                                         |  |  |
| удаление перекрытии (1)   | конечными CA12 и AntiKt4 AntiKt4 и b-стру                                |                                         |  |  |
| TT                        | Событие удаляется, если                                                  |                                         |  |  |
| Чистка струи              | начальная AntiKt4 является LooseBad                                      |                                         |  |  |
| V                         |                                                                          | между начальными е и                    |  |  |
| удаление перекрытии (2)   |                                                                          | конечными AntiKt10                      |  |  |
| Число струй               | $N_{\text{final}}^{\text{jets}} \ge 2 \mid\mid N_{\text{final}}^J \ge 1$ | $N_{\text{final}}^J \ge 1$              |  |  |
| II                        | $N^e_{\rm final} + N^{\mu}_{\rm final} = 1$                              | $N_{\rm final}^e = 1$                   |  |  |
| Число лептонов            | $N_{\text{baseline}}^e + N_{\text{baseline}}^\mu = 0$                    |                                         |  |  |
| Τ                         | Событие удаляется, если                                                  |                                         |  |  |
| тригтерное соответствие   | конечный $\ell$ не совпадает с триггируемым $\ell$                       |                                         |  |  |
|                           |                                                                          | Смоделированные данные:                 |  |  |
| Paranamanyaa aaamamamanya |                                                                          | событие удаляется, если                 |  |  |
| тенераторное соответствие | —                                                                        | конечный е не является                  |  |  |
|                           |                                                                          | генераторным е                          |  |  |
| $E_{ m T}^{ m miss}$      | $E_{ m T}^{ m miss} > 30~\Gamma$ əB                                      | $E_{ m T}^{ m miss} > 100 \; \Gamma$ əB |  |  |
| $m_J$                     | _                                                                        | $m_{\rm final}^J > 50 \ \Gamma$ əB      |  |  |
| $D_2^{\beta=1}$           |                                                                          | событие удаляется, если                 |  |  |
|                           |                                                                          | AntiKt10 не проходит                    |  |  |
|                           |                                                                          | верхний отбор с W-tag50                 |  |  |

## 4.3. Поправочные коэффициенты

Для того, чтобы учесть различие эффективности регистрации объектов в экспериментальных и смоделированных данных, вес каждого смоделированного события умножается на поправочные коэффициенты (SF), соответствующие смоделированным объектам, реконструированным на уровне триггера или оффлайн-реконструкции.

Поправочные коэффициенты для лептонных (электронных и мюонных) триггеров вычисляются как отношение эффективностей триггеров ( $\epsilon_{trig}$ ), оцененных для реальных (data) и смоделированных (mc) данных, SF<sub>trig</sub> =  $\epsilon_{trig}^{data}/\epsilon_{trig}^{mc}$ . Электронные и мюонные SF на уровне offline вычисляются как отношение полной эффективности реконструкции ( $\epsilon_{reco}$ ), идентификации ( $\epsilon_{id}$ ) и изоляции ( $\epsilon_{iso}$ ),  $\epsilon_{offline} = \epsilon_{reco} \times \epsilon_{id} \times \epsilon_{iso}$ , лептонов в реальных и смоделированных данных, SF<sub>offline</sub> =  $\epsilon_{data}/\epsilon_{offline}^{mc}$ . Все значения лептонных SF лежат около единицы и не опускаются ниже 0.95.

Веса событий в контрольной области  $t\bar{t}$  (описана ниже) в поиске возбужденных электронов, в которых применяется процедура мечения *b*-струй, и требуется как минимум две *b*-струи, умножаются на произведение SF двух лидирующих в событии *b*-струй. В проверочных областях *b*-jet VR в поисках возбужденных электронов и дибозонных резонансов, где требуется как минимум одна *b*-струя, вес события умножается на SF лидирующей *b*-струи.

## Фоновые процессы

Основными фоновыми процессами в области фазового пространства, интересного для поиска как возбужденных электронов (EL) в конечном состоянии  $e\nu J$ , так и дибозонных резонансов (VV) в  $\ell\nu jj/J$ , являются процессы ассоциированного рождения W- и Z-бозонов и струй (W + jets и  $Z/\gamma^*$  + jets, соответственно), рождения пары t-кварка и -антикварка ( $t\bar{t}$ ), одиночного t-кварка (Single-t) и дибозонов (VV).

В поиске возбужденных электронов доминирующим фоновым процессом является рождение пары  $t\bar{t}$  с лидирующим распадом одиночного t-кварка в Wb, то есть  $t\bar{t} \rightarrow WbWb$  с последующим лептонным распадом одного W-бозона и адронным распадом второго W-бозона. Второй по значимости процесс ассоциированное рождение W-бозона и струй в электронном канале распада W-бозона,  $W(\rightarrow e\nu)$  + jets, в котором конечное состояние события совпадает с сигнальным  $e\nu J$ , но происхождение не совпадает с сигнальным. Меньший вклад вносят Single-t, VV (WW, ZZ, WZ),  $Z/\gamma^*(\rightarrow ee)$  + jets,  $W(\rightarrow \tau\nu)$  + jets и  $Z/\gamma^*(\rightarrow \tau\tau)$  + jets. Вклад всех вышеперечисленных фоновых процессов оценен с помощью смоделированных наборов данных (Раздел 3.4).

Основной вклад в суммарный фон в поиске дибозоннных резонансов вносит процесс W+jets, следующими по значимости являются процессы  $t\bar{t}$ , Single-t, VV и  $Z/\gamma^*$  + jets.

Кроме того, часть фона в обоих анализах составляют события с адронными струями, ошибочно идентифицированными как электроны (fake-электроны) и мюоны (fake-мюоны). Достоверно смоделировать такой фон невозможно, так как при этом возникает неопределенность при перемножении большого сечения рождения струй на малую вероятность ошибочной идентификации струй как лептонов. Поэтому оценки вклада этих процессов проводятся из наборов реальных данных, обогащенных событиями с fake-лептонами. В поиске возбужденных электронов оценка фона fake-электронов производится с помощью матричного метода, описанного далее в Разделе 5.1, а вклад от непряморожденных мюонов пренебрежимо мал. В поиске дибозонных резонансов оценка fake-фонов проводится в контрольных областях, что обсуждается ниже.

Композиция всех основных фоновых процессов после первичного отбора событий для анализов EL и VV обсуждается в Разделе 5.2.

# 5.1. Матричный метод для оценки фона ложных электронов в поиске возбужденных электронов

Матричный метод (MM) [124; 125] позволяет вычислить вероятность ложной идентификации струй как электронов по известной вероятности f, которая определена как доля кандидатов в струи, идентифицированных в качестве loose-электронов ( $N_{loose}^{fake}$ ), проходящих также и электронную идентификацию tight ( $N_{loose\&tight}^{fake}$ )<sup>1</sup>,

$$f = N_{loose\&tight}^{fake} / N_{loose}^{fake}.$$
 (5.1)

Величина f оценена в [126] с использованием специального набора данных, обогащенного событиями с fake-электронами, которые отобраны с помощью триггера на одиночный электрон с идентификацией *loose id*<sup>2,3</sup>. Требование  $E_{\rm T}^{\rm miss} < 25$  ГэВ, примененное к отобранным событиям позволяет подавить вклад от событий  $W \to e\nu$ . Вклад событий  $Z \to ee$  подавлен за счет удаления событий с двумя электронами *loose id* с инвариантной массой, попадающей в массовое окно Z бозона,  $|m_{ee} - m_Z| < 20$  ГэВ. Несмотря на то, что в таком

<sup>&</sup>lt;sup>1</sup> Loose идентификация является набором более слабых условий отбора объекта, чем *tight*, и, следовательно, включает в себя последнюю.

<sup>&</sup>lt;sup>2</sup> Для *loose* объектов изоляция не применена.

<sup>&</sup>lt;sup>3</sup> Существенно то, что для данного отбора используются те же электронные триггеры, что и в анализе

наборе событий доминируют события с несколькими струями, вклад событий с реальными электронами от процессов W + jets, tX,  $Z/\gamma^*$  + jets и образования VV не является пренебрежимо малым. Этот вклад оценен из смоделированных наборов данных и вычтен из двумерного распределения по  $\{p_{\rm T}, \eta\}$  для *loose* и *tight* кандидатов в электроны. Величина f далее найдена как отношение распределений по  $p_{\rm T}$  и  $\eta$  чисел событий  $N_{loose\&tight}^{fake}$  к  $N_{loose}^{fake}$ . Значение f варьируется от  $\simeq 20\%$  для  $p_{\rm T} = 30$  ГэВ до  $\simeq 10\%$  для  $p_{\rm T} > 500$  ГэВ.

Следующим необходимым параметром для ММ является условная вероятность r того, что реальный электрон (*real* электрон), прошедший условия *loose*, пройдет также и условия *tight*. Вероятность r была определена в [126] с использованием электронов из смоделированного набора данных для процесса  $Z \to ee$ , как  $r = N_{loose\&tight}^{real}/N_{loose}^{real}$  в зависимости от  $p_{\rm T}$  и  $\eta$ . Эта вероятность достигает 90% для всех рассматриваемых  $p_{\rm T}$  электрона в данном анализе.

В данной работе для реализации матричного метода использована программа LPXMatrixMethod [125; 127], которая широко используется в анализах эксперимента ATLAS. Вычисление величин f и r, определенных выше, подробно описано в [126].

Для конечного состояния  $e\nu J$  на реальных данных определены два числа событий с одним электроном, классифицируемых как  $N_T$  и  $N_L$ , соответствующих числам электронов, прошедших tight (T) — определен в Разделе 4.1.1 как окончательно отобранный электрон, и loose но не tight (L) — электрон, прошедший все tight условия отбора с отличием только в идентификационных и изоляционных критериях, которые приведены в Таблице 5.1. Эти числа связаны с двумя неизвестными числами событий: с одним реальным электроном,  $N_R$ , и одним fake-электроном, реконструированным из струи,  $N_F$ , следующим уравнением:

$$\begin{pmatrix} N_T \\ N_L \end{pmatrix} = \begin{pmatrix} r & f \\ (1-r) & (1-f) \end{pmatrix} \begin{pmatrix} N_R \\ N_F \end{pmatrix}.$$
 (5.2)

Таблица 5.1. Условия отбора для *tight* и *loose но не tight* электронов."—" — условие не применяется.

|               | "T"      | "L"                                                                      |
|---------------|----------|--------------------------------------------------------------------------|
| Идентификация | tight id | $p_{\rm T} \geq 145$ ГэВ & loose id<br>$m_{\rm T} < 145$ ГэВ & medium id |
| Изоляция      | loose    | $p_{\rm T} < 145$ 1 9D & meanum nu                                       |

Число ложных электронов в числе номинально отобранных *tight* находится из Уравнения 5.3:

$$N_T^{fakes} = f N_F \,, \tag{5.3}$$

где ненаблюдаемая величина N<sub>F</sub> находится из Уравнения 5.2:

$$\begin{pmatrix} N_R \\ N_F \end{pmatrix} = \frac{1}{(r-f)} \begin{pmatrix} 1-f & -f \\ r-1 & r \end{pmatrix} \begin{pmatrix} N_T \\ N_L \end{pmatrix}$$
(5.4)

Объединяя Уравнения 5.3 и 5.4, получаем:

$$N_T^{fakes} = \frac{f}{(r-f)} \left\{ (r-1)N_T + rN_L \right\}$$
(5.5)

# 5.2. Композиция фоновых процессов после первичного отбора

Композиция фоновых процессов после первичного отбора событий (Глава 4) приведена в Таблице 5.2 и дополнительно проиллюстрирована на Рисунке 5.1 с распределениями по различным кинематическим переменным для поиска возбужденных электронов и в Таблице 5.3 для поиска дибозонных резонансов. События из смоделированных наборов данных нормированы на полную светимость экспериментальных данных с учетом  $\sigma \times \mathcal{B}$ ,  $\epsilon_{\text{filter}}$  и  $k_{\text{factor}}$  4 (Раздел 3.6). Кроме того, для поиска возбужденных электронов были учтены статистические

<sup>&</sup>lt;sup>4</sup> К смоделированным данным не применялись процедуры перевзвешивания или нормировки с помощью фитирования данных.

и систематические неопределенности. Полный набор кинематических распределений для поиска возбужденных электронов приведен в Приложении Г.

Как видно из Таблиц 5.2 и 5.3, наибольший вклад в суммарный фон вносят процессы рождения  $t\bar{t}$  и  $W(\rightarrow e\nu)$  + jets для поиска возбужденных электронов и W + jets ( $W(\rightarrow \ell\nu)$  + jets, где  $\ell = e, \mu, \tau$ ) для поиска дибозонных резонансов, вклад остальных фоновых процессов значительно меньше. Таблицы 5.2 и 5.3 не предназначены для сопоставления абсолютных значений чисел фоновых событий между поисками EL и VV, так как первичные отборы как объектов, так и событий в них отличаются.

Таблица 5.2. Числа событий  $(N_{\text{evt}})$  в фоновых процессах, нормированные на теоретическое сечение рождения фоновых процессов для 36.1 фб<sup>-1</sup>, после *первичного* отбора. Вклад фоновых процессов в суммарную композицию фона  $(N_{\text{total}})$  после *первичного* отбора представлен в %. Фон fake-электронов включает все источники событий с неправильно идентифицированными электронами. Такие события не учитываются в смоделированных данных для избежания двойного счета.

|                                          | $N_{ m evt}$              | $N_{\rm evt}/N_{\rm total}$ [%] |
|------------------------------------------|---------------------------|---------------------------------|
| $W(\rightarrow e\nu) + \text{jets}$      | $(1218 \pm 96) \times 10$ | 27                              |
| $W(\rightarrow \tau \nu) + \text{jets}$  | $1291\pm97$               | 3                               |
| $Z/\gamma^*(\to ee) + \text{jets}$       | $(7\pm2)\times10$         | <1                              |
| $Z/\gamma^*(\to \tau\tau) + \text{jets}$ | $(26 \pm 3) \times 10$    | <1                              |
| $tar{t}$                                 | $(26 \pm 2) \times 10^3$  | 58                              |
| Single- $t$                              | $(26 \pm 2) \times 10^2$  | 6                               |
| $\mid VV$                                | $(164 \pm 11) \times 10$  | 4                               |
| Fake-электроны                           | $(8\pm2)\times10^2$       | 2                               |



Рис. 5.1. Распределения по кинематическим переменным после первичного отбора для поиска возбужденных электронов.

58

Таблица 5.3. Вклады фоновых процессов  $(N_{\text{evt}})$  после первичного отбора событий, нормированные на теоретическое сечение и интегральную светимость 20.3 фб<sup>-1</sup>. В правой колонке показаны относительные вклады фоновых процессов в полное число фоновых событий  $(N_{\text{total}})$ .

|                            | $N_{ m evt}$ |          | $N_{\rm evt}/N_{\rm total}$ [%] |       |
|----------------------------|--------------|----------|---------------------------------|-------|
| каналы распада             | e            | $\mu$    | e                               | $\mu$ |
| W + jets                   | 76853600     | 68530500 | 91                              | 91    |
| $Z/\gamma^* + \text{jets}$ | 6701340      | 6251600  | 8                               | 8     |
| $t\bar{t}$                 | 491097       | 434220   | < 1                             | < 1   |
| Single- $t$                | 141017       | 124199   | < 1                             | < 1   |
| $\mid VV$                  | 119200       | 104315   | < 1                             | < 1   |

# Глава 6

## Стратегия анализа

Поиск основан на подсчете чисел событий в областях фазового пространства, которые определяются путем наложения ограничений на дискриминирующие переменные. Эти переменные выбираются так, чтобы эффективно разделить сигнальные и фоновые процессы в сигнальных (SR), контрольных (CR) и проверочных (VR) областях. Выбор SR основан на максимизации чувствительности конкретной сигнальной области к сигнальному процессу, предсказанному моделью для конкретного значения  $m_{e^*}$ , или  $m_{G^*}$ , или  $m_{W'}$  с учетом присутствия ненулевого фона от процессов SM в данной SR. В поиске возбужденных электронов эффективность отбора сигнала практически не зависит от параметра модели  $\Lambda$ , поэтому оптимизация SR проведена для различных значений  $m_{e^*}$ , вместо двумерной  $\{m_{e^*}, \Lambda\}$  оптимизации SR. Контрольные области строятся таким образом, чтобы обеспечить преобладание вклада соответствующего фонового процесса над остальными и статистически достаточное число фоновых событий в данной области при незначительном вкладе сигнального процесса. В CR производится измерение, позволяющее вычислить из данных поправку проинтегрированного по CR сечения соответствующего фонового процесса и его систематическую неопределенность для оценки вклада данного процесса в соответствующей SR. Анализ выполняется «вслепую», то есть, до возможности сравнения экспериментальных данных с фоновыми процессами в сигнальных областях, прежде всего, вычисляются поправки основных фоновых процессов в CR, далее проверяется соответствие поправленных предсказаний фона экспериментальным данным в проверочных областях (VR), лежащих в фазовом пространстве между контрольными и сигнальными областями, не перекрывая их. Кроме этого, VR выбирается так, что вклад сигнального процесса пренебрежимо мал по сравнению с вкладами фоновых процессов.

Выбор дискриминирующих переменных для поисков возбужденных электронов (EL) и дибозонных резонансов (VV) обоснован в Разделе 6.1. Построение и оптимизация сигнальных областей для поисков EL и VV описаны в Разделе 6.2. Построение контрольных областей для двух доминирующих в поиске EL фоновых процессов —  $W(\rightarrow e\nu)$  + jets и  $t\bar{t}$ , а также главного фонового процесса W+jets в поиске VV, изложено в Разделе 6.3. Построение проверочных областей в поисках возбужденных электронов и дибозонных резонансов обсуждается в Разделе 6.4.

## 6.1. Дискриминирующие переменные

Дискриминирующие переменные введены в анализ как специальные характеристики события, чувствительные к конкретным фоновым или сигнальным процессам. Дискриминирующие переменные предназначены для выделения областей фазового пространства, в которых доминирует выбранный фоновый или сигнальный процесс.

Для поиска возбужденных электронов в конечном состоянии  $e\nu J$  в качестве дискриминирующих были выбраны следующие переменные:

- Инвариантная масса коллимированной тяжелой струи, *m<sub>J</sub>*, распределение которой имеет максимум при значении, близком к массе *W*-бозона, использована для выделения сигнального процесса *e<sup>\*</sup>* → *νW*(→ *J*) и исключения событий главного фонового процесса *W* (→ *eν*)+jets, в котором источником коллимированных тяжелых струй не является *W*-бозон.
- Поперечная масса нейтрино и коллимированной струи кандидата в распадающийся в адроны W-бозон, m<sup>νW</sup><sub>T</sub>, представленная Уравнением 6.1, имеет якобиановский максимум в сигнальном процессе e<sup>\*</sup> → νW.

$$m_{\rm T}^{\nu W} = \sqrt{(m_W)^2 + 2 \times \left(\sqrt{(m_W)^2 + (p_{\rm T}^W)^2} \times E_{\rm T}^{\rm miss} - p_x^W \times E_x^{\rm miss} - p_y^W \times E_y^{\rm miss}\right)}, \quad (6.1)$$

где  $p_{x(y)}^W - x(y)$  компонента импульса тяжелой коллимированной струи — кандидата в W-бозон. На поперечную массу  $m_{\rm T}^{\nu W}$  наложено условие превышения некоторого порога, который растет в соответствии с ростом  $m_{e^*}$ .

- Абсолютное значение азимутального угла между электроном и нейтрино,  $\left|\Delta\phi(e, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})\right|$ , распределение по которому имеет разную форму для сигнального и фоновых процессов с лептонным распадом *W*-бозона, позволяющую эффективно их разделить.
- Асимметрия между значениями поперечных импульсов электрона и кандидата в возбужденный электрон,

$$p_{\rm T}^{\rm balance} = \frac{p_{\rm T}^e - p_{\rm T}^{e^*}}{p_{\rm T}^e + p_{\rm T}^{e^*}},\tag{6.2}$$

где  $p_{\rm T}^{e^*}$  восстановлен по поперечному импульсу кандидата в *W*-бозон, распадающегося в адроны, и потерянному поперечному импульсу. Характерные значения модуля  $p_{\rm T}^{\rm balance}$  в сигнальном процессе меньше, чем в фоновых, так как модуль  $p_{\rm T}$  системы  $ee^*$  много меньше  $p_{\rm T}^e$  и  $p_{\rm T}^{e^*}$  и, следовательно,  $|p_{\rm T}^e - p_{\rm T}^{e^*}| << p_{\rm T}^e + p_{\rm T}^{e^*}$ . Это соотношение не выполняется в фоновых процессах, где значительная часть поперечного импульса уносится реконструируемыми объектами помимо отобранных электрона и коллимированной тяжелой струи.

Для поиска дибозонных резонансов с конечным состоянием  $\ell \nu j j / J$  были выбраны следующие дискриминирующие переменные:

 Инвариантная масса двух лидирующих в событии разрешенных струй, *m<sub>jj</sub>*, или лидирующей коллимированной струи, *m<sub>J</sub>*, имеющая максимум распределения в области масс *W*- и *Z*-бозонов, позволяет выделить собы- тия сигнального процесса и удалить события главного фонового процесса *W/Z* + jets, в котором струи не являются продуктами распада *W*- или *Z*-бозонов.

- Поперечный импульс системы двух лидирующих в событии разрешенных струй, p<sub>T</sub><sup>jj</sup>, или лидирующей коллимированной струи, p<sub>T</sub><sup>J</sup>, соответствующий адронному распаду кандидата в W- или Z-бозон.
- Поперечный импульс системы лептона и нейтрино, p<sub>T</sub><sup>ℓν</sup>, соответствующий кандидату в W-бозон, распадающийся по лептонному каналу.
- Абсолютное значение азимутального угла,  $\left| \Delta \varphi(\text{jet}, \vec{E}_{\text{T}}^{\text{miss}}) \right|$ , между лидирующей струей и нейтрино.

### 6.2. Сигнальные области

В поиске возбужденных электронов оптимизация условий отбора на дискриминирующие переменные для построения SR произведена отдельно для каждого значения  $m_{e^*}$ , при котором моделировались сигнальные события. При этом для каждого данного  $m_{e^*}$  максимизируется модифицированный критерий значимости [128], заданный Уравнением 6.3:

$$Z = \sqrt{2 \times ((S+B) \times \ln(1+S/B) - S)},$$
(6.3)

где S и B — числа сигнальных и фоновых событий, соответственно, в оптимизируемой SR. Этот метод также проверен путем минимизации ожидаемого верхнего предела на сечение сигнального процесса, что дает близкий результат для всех значений  $m_{e^*}$ . Оптимизация SR выполнена только на смоделированных фоновых и сигнальных наборах данных без использования экспериментальных данных, что является необходимым требованием при выполнении «*слепого*» анализа.

Максимизация модифицированного критерия значимости Z выполнена путем одновременного варьирования условий отбора на все дискриминирующие переменные. Для каждого значения  $m_{e^*}$  были исследованы три разных комбинации переменных:

- 1. max  $p_{\rm T}^{\rm balance}$ , max  $m_{\rm T}^{\nu W}$   $\mu$  min  $\left| \Delta \phi(e, \vec{E}_{\rm T}^{\rm miss}) \right|$ ,
- 2. max  $p_{\rm T}^{\rm balance}$ , min  $m_{\rm T}^{\nu W}$   $\mu$  min  $\left| \Delta \phi(e, \vec{E}_{\rm T}^{\rm miss}) \right|$ ,
- 3. min  $\left|\Delta\phi(e, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})\right|$ , min  $m_{\mathrm{T}}^{\nu W}$  u max  $m_{\mathrm{T}}^{\nu W}$ ,

где max (min) обозначают максимально (минимально) допустимые значения соответствующих переменных. Третья комбинация была выбрана как наиболее эффективная для построения SR. Выбор всех перечисленных дискриминирующих переменных физически обоснован, однако после применения ограничений на  $\left|\Delta\phi(e, \vec{E}_{\rm T}^{\rm miss})\right|$  и  $m_{\rm T}^{\nu W}$ , дополнительное использование  $p_{\rm T}^{\rm balance}$  неэффективно. Распределения для переменных  $m_{\rm T}^{\nu W}$ ,  $\left|\Delta\phi(e, \vec{E}_{\rm T}^{\rm miss})\right|$  и  $m_J$  после первичного отбора событий (Раздел 4.2) и фита только фоновых процессов в CR (Раздел 6.3 и Глава 8) показаны на Рисунке 6.1.

В результате оптимизации условий отбора на дискриминирующие переменные  $m_{\rm T}^{\nu W}$  и  $\left| \Delta \phi(e, \vec{E}_{\rm T}^{\rm miss}) \right|$  для каждого значения  $m_{e^*}$ , всего построено девять SR, причем каждая SR оптимальна в своем, не перекрывающемся с другими, диапазоне значений  $m_{e^*}$ . Первичный отбор событий и дополнительные критерии на дискриминирующие переменные, определяющие SR, приведены в Таблице 6.1. Кроме этого, к событиям в SR применяются вето на наличие *b*-струй и условие мечения коллимированной струи как *W*-бозона с 50% вероятностью (*W*-tag50) (Таблица 6.4).

Для поиска дибозонных резонансов были оптимизированы три сигнальные области: LRR с двумя разрешенными низкоэнергетическими струями, HRR с двумя разрешенными высокоэнергетическими струями и MR с одной коллимированной высокоэнергетической струей. Условия отбора для каждой SR перечислены в Таблице 6.2. Эффективности отборов сигнальных событий для каждой из SR показаны на Рисунке 6.2. Конкретная сигнальная область применяется к  $m_{G^*}$  или  $m_{W'}$ , если вносит не менее 10% от суммарной эффективности сигнала в данной массовой гипотезе. Применение отдельных или комбинации



Рис. 6.1. Распределения по переменным  $m_J(a)$ ,  $m_T^{\nu W}(\delta)$  и  $\left|\Delta\phi(e, \vec{E}_T^{miss})\right|(e)$ , используемым для разделения сигнальных и фоновых процессов в поиске возбужденных электронов, показаны после первичного отбора событий. Вклады основных фоновых процессов уточнены путем сравнения с данными в соответствующих контрольных областях (CR). Сигнал смоделирован в предположении  $\Lambda = 5$  ТэВ. Последний вход гистограмм включает в себя информацию из последующих не показанных входов. В нижней части графиков показаны отношения данных с их статистической неопределенностью к предсказанным полным числам фоновых событий. Все систематические и статистические неопределенности, связанные с фоном SM, представлены в виде заштрихованной области.

Таблица 6.1. Оптимизированные условия отбора, применяемые к дискриминирующим переменным после первичного (PRE) отбора событий (Раздел 4.2) для определения сигнальных областей (SR). Эффективность отбора сигнала как отношение числа смоделированных сигнальных событий в каждой сигнальной области (SRi) к их числу после отбора PRE и к их полному числу перед всеми отборами (полная эффективность) даны в %. Дополнительно приведены эффективности принятого в SRi отбора сигнала для значений  $m_{e^*}$ , соответствующих предыдущей (SRi-1) и последующей (SRi+1) сигнальным областям, относительно отбора PRE. Каждая SR соответствует одной или нескольким массовым гипотезам, как показано во второй колонке. "H/n" означает, что условие в данной SR не применяется.

|      | т <sub>е*</sub><br>[ГэВ] | $\min m_{\rm T}^{\nu W}$ [ΓəB] | $\max m_{\rm T}^{\nu W}$ [ $\Gamma$ əB] | $\min \left  \Delta \phi(e, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})  ight $ [радиан] | эфф. в<br>SRi-1 к<br>PRE<br>[%] | эфф. в<br>SRi к<br>PRE<br>[%] | эфф. в<br>SRi+1 к<br>PRE<br>[%] | эфф.<br>полная<br>[%] |
|------|--------------------------|--------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|-----------------------|
| SR1  | 100                      | 0                              | 200                                     | 2.7                                                                                | <u>[, е]</u><br>н/п             | 61                            | 0                               | 3                     |
| SR2  | 200                      | 100                            | н/п                                     | 2.4                                                                                | 46                              | 59                            | 61                              | 4                     |
| SR3  | 300                      | 100                            | н/п                                     | 2.1                                                                                | 49                              | 56                            | 40                              | 5                     |
| SR4  | 400                      | 200                            | $_{ m H}/\pi$                           | 1.8                                                                                | 45                              | 40                            | 34                              | 5                     |
| SR5  | 500                      | 300                            | $_{ m H}/\pi$                           | 1.5                                                                                | 39                              | 38                            | 31                              | 5                     |
| SR6  | 600                      | 400                            | $_{ m H}/\pi$                           | 1.2                                                                                | 38                              | 38                            | 28                              | 6                     |
| SR7  | 700                      | 500                            | $_{ m H}/\pi$                           | 1.2                                                                                | 40                              | 34                            | 28                              | 6                     |
| SB8  | 800                      | 600                            | н/п                                     | 0.9                                                                                | 38                              | 36                            | 27                              | 7                     |
| 5100 | 900                      | 000                            |                                         |                                                                                    | 38                              | 38                            | 32                              | 8                     |
|      | 1000                     |                                |                                         |                                                                                    | 42                              | 37                            | н/п                             | 8                     |
|      | 1250                     |                                |                                         |                                                                                    | 44                              | 42                            | $_{\rm H}/\pi$                  | 9                     |
|      | 1500                     |                                |                                         |                                                                                    | 45                              | 43                            | $_{\rm H}/\pi$                  | 10                    |
|      | 1750                     |                                |                                         |                                                                                    | 45                              | 44                            | н/п                             | 10                    |
|      | 2000                     |                                |                                         | 0.9                                                                                | 46                              | 45                            | $_{\rm H}/\pi$                  | 10                    |
|      | 2250                     |                                | 700 н/п                                 |                                                                                    | 45                              | 45                            | н/п                             | 10                    |
| SR9  | 2500                     | 700                            |                                         |                                                                                    | 44                              | 43                            | н/п                             | 10                    |
|      | 2750                     |                                |                                         |                                                                                    | 44                              | 44                            | н/п                             | 10                    |
|      | 3000                     |                                |                                         |                                                                                    | 44                              | 44                            | н/п                             | 10                    |
|      | 3250                     |                                |                                         |                                                                                    | 43                              | 42                            | н/п                             | 10                    |
|      | 3500                     |                                |                                         |                                                                                    | 44                              | 43                            | н/п                             | 10                    |
|      | 3750                     |                                |                                         | 42                                                                                 | 42                              | н/п                           | 10                              |                       |
|      | 4000                     |                                |                                         |                                                                                    | 42                              | 42                            | н/п                             | 9                     |

сигнальных областей для каждой массовой гипотезы моделей дибозонных резонансов приведено в Таблице 6.3.

Таблица 6.2. Оптимизированные условия отбора, применяемые к дискриминирующим переменным после первичного отбора событий для определения сигнальных областей в поиске дибозонных резонансов. Для исключения двойного счета событий и обеспечения ортогональности сигнальных областей, вводится следующий порядок применения отборов к событию: MR, HRR, LRR. "—" означает, что условие в данной области не применяется.

| LRR                                           | HRR                                                    | MR                                         |
|-----------------------------------------------|--------------------------------------------------------|--------------------------------------------|
| $N_j \ge 2$ AntiKt4                           | $N_j \ge 2$ AntiKt4                                    | $N_J \ge 1 \text{ CA12}$                   |
| $p_{\mathrm{T}}^{j} > 30$ ГэВ                 | $p_{\mathrm{T}}^{j} > 80$ ГэВ                          | $p_{\mathrm{T}}^{J} > 400$ ГэВ             |
| $p_{\mathrm{T}}^{jj} > 100$ ГэВ               | $p_{\mathrm{T}}^{jj} > 300$ ГэВ                        |                                            |
| $p_{\mathrm{T}}^{\ell \nu} > 100 \ \Gamma$ əB | $p_{\mathrm{T}}^{\ell \nu} > 300 \ \Gamma$ əB          | $p_{\mathrm{T}}^{\ell \nu} > 300$ ГэВ      |
| $N_{b-\mathrm{jet}} = 0$                      | $N_{b-\mathrm{jet}} = 0$                               | $N_{b- m jet} = 0$                         |
| $\Delta\phi(j_1, E_{\rm T}^{\rm miss}) > 1$   | $\Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}}) > 1$ | $\Delta \phi(J, E_{\rm T}^{\rm miss}) > 1$ |
| $65 < m_{jj} < 105$ ГэВ                       | $65 < m_{jj} < 105$ ГэВ                                | $65 < m_J < 105$ ГэВ                       |

## 6.3. Контрольные области

Контрольные области (CR) используются для получения нормировочных факторов и ограничения систематических неопределенностей для соответствующих фоновых процессов, которые далее используется в финальном фите (Глава 8). CR для каждого данного фонового процесса определяется таким образом, чтобы обеспечить значительное преобладание вклада данного процесса по сравнению с остальными при статистически достаточном числе событий. При этом CR не перекрывается с соответствующей SR. Для уменьшения неопределенностей моделирования фонового процесса в SR, связанных с экстраполяцией из CR в SR, условия отбора в CR выбраны наиболее близкими к соответствую-

Таблица 6.3. Оптимизация применения одной из трех сигнальных областей или их комбинации: с двумя разрешенными низкоэнергетическими струями (LRR), с двумя разрешенными высокоэнергетическими струями (HRR), с одной коллимированной высокоэнергетической струей (MR), — для массовых гипотез в поиске дибозонных резонансов в моделях RS1  $G^*$  и EGM W'.

| [ГэВ] | $G^*$          | W'             |
|-------|----------------|----------------|
| 300   | LRR            | LRR            |
| 400   | LRR            | LRR            |
| 500   | LRR            | LRR            |
| 600   | LRR & HRR      | LRR & HRR      |
| 700   | LRR & HRR      | LRR & HRR      |
| 800   | LRR & HRR & MR | LRR & HRR & MR |
| 900   | HRR & MR       | HRR & MR       |
| 1000  | MR             | HRR & MR       |
| 1100  | MR             | HRR & MR       |
| 1200  | MR             | MR             |
| 1300  | MR             | MR             |
| 1400  | MR             | MR             |
| 1500  | MR             | MR             |
| 1600  | MR             | MR             |
| 1700  | MR             | MR             |
| 1800  | MR             | MR             |
| 1900  | MR             | MR             |
| 2000  | MR             | MR             |
| 2100  | MR             | MR             |
| 2200  | MR             | MR             |
| 2300  | MR             | MR             |
| 2400  | MR             | MR             |
| 2500  | MR             | MR             |



Рис. 6.2. Эффективность отбора сигнальных событий в поиске дибозонных резонансов для обоих, электронного и мюонного, каналов и трех сигнальных областей, LRR, HRR и MR в зависимости от  $m_{G^*}$  (a) и  $m_{W'}$  (б). Эффективность показана в отношении к суммарному числу событий  $WW/WZ \rightarrow \ell \nu q q$  для  $G^*/W'$  с  $\ell = e, \mu, \tau$ .

щей SR. Отдельные условия отбора могут быть изменены с целью обогащения конкретной CR событиями соответствующего фонового процесса, вместе с тем обеспечивая ортогональность с соответствующей SR, а остальные условия отбора сохраняются такими же как в SR. Таким образом, для каждой SR определен соответствующий набор CR.

Для поиска возбужденного электрона в конечном состоянии  $e\nu J$  определены два набора CR в соответствии с двумя главными фоновыми процессами, показанными в Разделе  $5.2 - W (\rightarrow e\nu) + \text{jets} (W \text{ CR})$  и  $t\bar{t} (t\bar{t} \text{ CR})$  (Таблица 6.4). *W* CR определены полным набором критериев первичного отбора (Раздел 4.2), такими же критериями отбора событий как и SR (Таблица 6.1), вместе с вето на *b*-струи, но с инвертированным критерием на массу коллимированной струи:  $m_J$  не идентифицируется как *W*-бозон с 80% вероятностью (*W*-tag80). Кроме того, из всех *W* CR удалено условие на  $\left|\Delta\phi(e, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})\right|$ , чтобы уменьшить статистическую неопределенность. Также, в анализе не участвует *W* CR1, которая соответствовала бы SR1, так как в такой CR фоновый процесс  $W (\rightarrow e\nu) + \text{jets}$  не является основным. События в  $t\bar{t}$  CR также проходят первичный отбор (Раз-

69

дел 4.2), все критерии отбора SR из Таблицы 6.1, масса лидирующей коллимированной струи удовлетворяет критерию W-tag50, кроме этого, события должны иметь не меньше двух *b*-струй. Никакие дополнительные кинематические ограничения на *b*-струи для построения  $t\bar{t}$  CR не накладываются. В результате, для девяти SR определены восемь W CR и девять  $t\bar{t}$  CR.

В поиске дибозонных резонансов нормировка вклада основного фонового процесса W + jets к данным вычисляется из распределения  $p_{\rm T}^W$  в области, построенной с применением всех условий отбора LRR, кроме инвертированного критерия на инвариантную массу разрешенных струй, которая не должна лежать в области значений массы W- и Z-бозонов,  $40 < m_{jj} < 65$  ГэВ или  $105 < m_{jj} < 200$  ГэВ. Нормировка вкладов фоновых процессов W/Z + jets и fake-лептонов вычисляется с помощью контрольного набора данных, полученного для каждой сигнальной области отдельно для электронного и мюонного каналов. Нормировки вычисляются с помощью минимизации бинированного фита  $\chi^2$  для распределения  $E_{\rm T}^{\rm miss}$ .

Для того, чтобы проиллюстрировать комбинацию фоновых процессов в поиске возбужденных электронов, построены две интегральные контрольные области: W CR и  $t\bar{t}$  CR, как описано выше, но без применения условий отбора событий на дискриминирующие переменные из Таблицы 6.1. Основные кинематические распределения в интегральной W CR показаны на Рисунке 6.3. Рисунок 6.4 представляет распределения в интегральной  $t\bar{t}$  CR. Смоделированные наборы данных нормированы на полную светимость данных с учетом сечения генератора,  $\epsilon_{\text{filter}}$  и  $k_{\text{factor}}$  до фита. Все систематические и статистические неопределенности отражены на рисунках. Распределения по различным кинематическим переменным приведены в Приложении Д для W CR и Приложении Е для  $t\bar{t}$  CR.



Рис. 6.3. Распределения по основным кинематическим переменным в интегральной W CR.



Рис. 6.4. Распределения по основным кинематическим переменным в интегральной  $t\bar{t}$  CR.
#### 6.4. Проверочные области

Оценка фона в CR проверена в дополнительных областях фазового пространства (VR). Эти области не включены в фит при поиске сигнала.

В поиске возбужденных электронов построены два набора проверочных областей:  $m_J$  VR и *b*-jet VR, по критериям отбора находящиеся между SR и *W* CR и SR и  $t\bar{t}$  CR, соответственно. Для определения  $m_J$  VR на события наложено инвертированное условие на  $m_J$  относительно SR и *W* CR. Для уменьшения статистической неопределенности условие на число *b*-струй опущено. При построении *b*-jet VR требуется ровно одна *b*-струя для проверки применимости полученной нормировки фона  $t\bar{t}$  из  $t\bar{t}$  CR с двумя и более *b*-струями к SR без *b*-струй. Условия на  $m_T^{\nu W}$  и  $\left|\Delta\phi(e, \vec{E}_T^{miss})\right|$  для обоих наборов VR те же, что и в SR. Все критерии отборов для VR показаны в Таблице 6.4.

В поиске дибозонных резонансов построены две проверочные области: fake VR для проверки корректности оценки фона fake-лептонов путем инверсии условия на  $E_{\rm T}^{\rm miss}$ ,  $E_{\rm T}^{\rm miss} < 30$  ГэВ для электронного канала и  $50 < E_{\rm T}^{\rm miss} < 80$  ГэВ для мюонного канала, и  $t\bar{t}$  VR требованием наличия хотя бы одной *b*-струи в событии.

Аналогично CR, для иллюстрации комбинации фоновых процессов в поиске возбужденных электронов построены интегральные VR без применения сигнальных условий из Таблицы 6.1. Для  $m_J$  VR распределения показаны на Рисунке 6.5, а для *b*-jet VR — на Рисунке 6.6. Нормировка смоделированных наборов данных произведена к полной светимости экспериментальных данных, фит в CR не произведен. Все систематические и статистические погрешности отражены на распределениях. Распределения по другим кинематическим переменным приведены в Приложениях Ж и З.



Рис. 6.5. Распределения по основным кинематическим переменным в интегральной  $m_J$  VR.



 $(\partial)$   $\eta$  электрона.

 $(e) \phi$  электрона.

Рис. 6.6. Распределения по основным кинематическим переменным в в интегральной b-jet VR.

75

Таблица 6.4. Условия отбора событий применяются после первичного отбора событий (PRE) (Раздел 4.2) в сигнальных областях (SR), контрольных областях (CR): W CR и  $t\bar{t}$  CR, и в проверочных областях (VR):  $m_J$  VR и *b*-jet VR. *W*-tag50 и *W*-tag80 означают мечение коллимированной струи в качестве *W*-бозона с 50% (*W*-tag50) и 80% (*W*-tag80) эффективностью отбора сигнала. "н/п" означает, что условие в данной области не применяется.

| Область          | $D_2^{\beta=1}$     | $m_J$ интервал      | $N^{b-\mathrm{jets}}$ | $m_{ m T}^{ u W}$ | $\Delta \phi(e, \vec{E}_{\mathrm{T}}^{\mathrm{miss}})$ |  |
|------------------|---------------------|---------------------|-----------------------|-------------------|--------------------------------------------------------|--|
| PRE              | W-tag50<br>проходит | н/п                 | н/п                   | н/п               | н/п                                                    |  |
| SB               | W-tag50             | W-tag50             | 0                     | прохолит          | прохолит                                               |  |
|                  | проходит            | проходит            | 0                     | проходит          | проходит                                               |  |
| W CR             | W-tag $50$          | W-tag $80$          | 0                     | прохолит          | н/п                                                    |  |
|                  | проходит            | не проходит         | 0                     | проподпі          | /                                                      |  |
| $t\bar{t}$ CB    | W-tag $50$          | W-tag $50$          | > 2                   | прохолит          | прохолит                                               |  |
| $t\bar{t}$ CR    | проходит            | проходит            | <u> </u>              | проходит          | проходит                                               |  |
| m - VB           | W-tag50             | W-tag50 не проходит | н/п                   | прохолит          | проходит                                               |  |
| $m_J$ VR         | проходит            | W-tag80 проходит    | п/ п                  | проходит          | проходит                                               |  |
| <i>b</i> -iet VB | W-tag50             | W-tag50             | 1                     | прохолит          | прохолит                                               |  |
|                  | проходит            | проходит            |                       | проходит          | проходит                                               |  |

## Глава 7

## Систематические неопределенности

Систематические неопределенности в поисках возбужденных электронов и дибозонных резонансов можно разделить на две категории: экспериментальные неопределенности (Раздел 7.1) и теоретические неопределенности (Раздел 7.2), связанные с предсказаниями оценок сигнальных и фоновых процессов. Детали вычислений экспериментальных неопределенностей могут быть найдены по ссылкам на литературные источники, приведенные в Главе 4. Подробности о статистических и систематических неопределенностях в поиске EL приведены в Приложении K.

## 7.1. Экспериментальные неопределенности

Оценка неопределенности вычисления интегральной светимости составляет 2.1% для данных 2015+2016 годов в анализе EL и 2.8% для данных 2012 года в анализе VV. Источником этой неопределенности является калибровка шкалы светимости, полученной при тестовых сканированиях по осям x и y в столкновениях отдельных сгустков протонов с различной степенью геометрического перекрытия поперечного сечения пучков [119; 122], а так же используя основные измерения светимости с помощью детектора LUCID-1 и LUCID-2 [120].

Неопределенности, связанные с энергетической шкалой и энергетическим разрешением для электрона, составляют меньше 1% для событий в смоделированных фоновых и сигнальных наборах данных во всех сигнальных областях. Дополнительно учитываются неопределенности эффективности электронного триггера (< 2%), реконструкции (< 1%), идентификации (< 3%) и изоляции электронов (< 6%).

Эффекты неопределенностей в восстановлении импульса мюонов, эффективности их реконструкции, идентификации, изоляции и в эффективности мю-

онного триггера стремятся в поиске возбужденных электронов к нулю.

Вклад неопределенностей поправки энергетической шкалы (JES) и разрешения (JER) для струй Antikt4 для фоновых процессов составляет 1–5% (JES) и 1–6% (JER) в сигнальных областях. Неопределенности, связанные с тяжелыми коллимированными струями с конусом R = 1.0 в анализе EL, возникают в связи с неопределенностями калибровок энергетической (JES) и массовой (JMS) шкал струй. Влияние этих неопределенностей на числа фоновых событий в сигнальных областях варьируется от 20% до 40%, а на числа сигнальных событий в сигсоставляет менее 10%. Также учитываются неопределенности поправок эффективности метода мечения *b*-струй. Для числа  $t\bar{t}$  событий такие неопределенности составляют менее 5%.

Процедура оценки фона ложных электронов является источником систематической неопределенности, равной 10-40% в сигнальных областях в зависимости от  $p_{\rm T}$  электрона.

#### 7.2. Теоретические неопределенности

Теоретические неопределенности вводятся для смоделированных фоновых и сигнальных наборов данных.

Для фоновых процессов они связаны с выбором набора PDF, значения  $\alpha_s$ , оценкой вклада неучтенных поправок высших порядков в пертурбативных вычислениях. Последний эффект оценивается путем вариации перенормировочных и факторизационных параметров в пределах 1.5–2 от их номинальных значений. Неопределенности, связанные с PDF оцениваются с помощью набора NNPDF3.0 [129] и двух альтернативных наборов, MMHT2014 [130] и CT14nnlo [131]. Влияние неопределенности  $\alpha_s$  оценивается путем варьирования номинального значения  $\alpha_s = 0.118$  на  $\pm 0.001$ . Теоретические неопределенности для фоновых процессов варьируются от 3% до 10% в сигнальных областях для анализа EL.

Для оценки сигнала учитываются только теоретические неопределенности, полученные варьированием набора PDF,составляющие от 3% до 10% в сигнальных областях анализа EL. В поиске VV значение неопределенностей, связанных с выбором PDF, составляет менее 1%, в то время как основным источником неопределиности сигнала является учет излучения в начальном (конечном) состоянии, ISR (FSR), моделируемый генератором РYTHIA, достигающая 12% (6%) для  $G^*$  (W').

# Глава 8

## Статистический анализ и результаты

#### 8.1. Статистическая модель

Статистический анализ в поиске EL выполнен с помощью построения модели простого счетного эксперимента, которая описывается функцией правдоподобия (LF):

$$L(\boldsymbol{N}, \boldsymbol{\theta}^{0}, \boldsymbol{m} | \boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = \left( \sum_{\boldsymbol{N}_{SR} \in \mathbf{N}_{SR} \times \prod_{i}^{Syst.} \nu_{SR,sig}^{i}(\theta_{i}) + \sum_{l}^{Bkg.} \beta_{l} \times B_{SR,l} \times \prod_{i}^{Syst.} \nu_{SR,l}^{i}(\theta_{i}) \times \gamma_{SR} \right)$$
Poissonian term for SR
$$\times \prod_{q}^{CR} P\left( N_{CR_{q}} | \left[ \sum_{l}^{Bkg.} \beta_{l} \times B_{CR_{q},l} \times \prod_{i}^{Syst.} \nu_{CR_{q},l}^{i}(\theta_{i}) \right] \times \gamma_{CR_{q}} \right)$$
Poissonian term for CR<sub>q</sub>

$$\times \prod_{n}^{Syst.} G\left(\theta_{n}^{0} | \theta_{n}, 1\right) \times \prod_{p \text{ obsonian constraint term}}^{Reg.} P\left( m_{p} | \gamma_{p} \times \tau_{p} \right).$$
(8.1)

где N — числа наблюдаемых событий в CR и SR (Глава 6), нормировочные параметры  $\beta$  введены для двух главных фоновых процессов анализа,  $W (\to e\nu)$ +jets и  $t\bar{t}^1$ . В и S обозначают предсказываемые числа событий фоновых и сигнальных процессов в конкретной области, соответственно.<sup>2</sup> Систематические неопределенности (Глава 7) учитываются вариацией значений функции  $\nu$  ( $\theta$ ), в которой эффект вариации систематического источника для модели параметризован через мешающий параметр (NP)  $\theta$ , как показано в Уравнении 8.2. Вариации NP

 $<sup>^1</sup>$ Значения этих параметров для остальных фоновых процессов фиксированы и установлены равными единице,  $\beta \equiv 1.$ 

 $<sup>^2</sup>$ Оценка вкладов всех фоновых и сигнальных процессов описана в Главе 5.

обычно ограничены вспомогательными измерениями, которые описываются соответствующими числами событий в LF. Так как систематическая неопределенность, связанная с вычислением светимости влияет на все процессы в CR и SR одинаково, то соответствующая функция определена простейшим образом как  $\nu(\theta) = \theta$ . Для остальных систематических неопределенностей  $\theta = 0$  соответствует номинальной оценке ( $I^0$ ), а  $\theta = 1$  соответствует оценке после смещения вверх на 1 $\sigma(I^+)$ , и  $\theta = -1$ — после смещения вниз на 1 $\sigma(I^-)$ . Для построения  $\nu(\theta)$  для  $\theta \in (-\infty, +\infty)$  используется Уравнение 8.2, предложенное в [132]:

$$\nu\left(\theta \middle| I^{0}, I^{+}, I^{-}\right) = \begin{cases} \left(I^{+}/I^{0}\right)^{\theta} & \theta \ge 1, \\ 1 + \sum_{i=1}^{6} a_{i} \times \theta^{i} & |\theta| < 1, \\ \left(I^{-}/I^{0}\right)^{-\theta} & \theta \le -1. \end{cases}$$
(8.2)

В случае применения только односторонней вариации источника систематической неопределенности, противоположное смещение берется симметрично. Коэффициенты  $a_i$  вычисляются из граничных условий  $\nu (\theta = \pm 1), d\nu/d\theta|_{\theta=\pm 1}, d^2\nu/d^2\theta|_{\theta=\pm 1}$ . Статистическая ограниченность смоделированных наборов данных учитывается с помощью параметров  $\gamma$ , предложенных в работе [132]. Параметры  $\boldsymbol{m}$  определены как  $\boldsymbol{m} = (\xi/\delta)^2$ , где  $\xi$  — полная оценка вклада сигнала или фона в сигнальной или контрольной области, и  $\delta$  — ее полная статистическая неопределенность. Параметр  $\tau = (\xi/\delta)^2$  в модели зафиксирован.

#### 8.2. Фит модели

Фит фоновых процессов в поиске возбужденных электронов произведен с использованием описанной в Разделе 8.1 модели LF, в которую входят только Wи  $t\bar{t}$  CR и только компоненты фоновых процессов. Нормировочные параметры  $\beta$  для процессов W + jets и  $t\bar{t}$  после такого фита приведены в Таблице 8.1.

Числа событий в W CR и  $t\bar{t}$  CR после одновременного фита в CR и SR показаны в Таблицах 8.2 и 8.3, соответственно. В Таблице 8.2 отсутствует W

Таблица 8.1. Нормировочные параметры с 68% доверительными интервалами после фита фоновых процессов в CR. "Н/П" — данная CR не применяется в канале  $e\nu J$ . Параметр  $\beta_W$  в SR1 установлен равным единице.

|     | $\beta_W$                       | $eta_{tar{t}}$               |
|-----|---------------------------------|------------------------------|
| CR1 | ${ m H}/{ m \Pi}$               | $0.8\substack{+0.2 \\ -0.2}$ |
| CR2 | $0.79\substack{+0.08 \\ -0.08}$ | $0.8\substack{+0.2 \\ -0.2}$ |
| CR3 | $0.79\substack{+0.08 \\ -0.08}$ | $0.8\substack{+0.2 \\ -0.2}$ |
| CR4 | $0.77\substack{+0.10 \\ -0.10}$ | $1.0\substack{+0.4 \\ -0.3}$ |
| CR5 | $0.72\substack{+0.10 \\ -0.10}$ | $1.2^{+0.5}_{-0.4}$          |
| CR6 | $0.83\substack{+0.10 \\ -0.10}$ | $0.7\substack{+0.4 \\ -0.4}$ |
| CR7 | $0.91\substack{+0.11 \\ -0.18}$ | $0.13^{+1.17}_{-0.13}$       |
| CR8 | $0.65\substack{+0.15\\-0.22}$   | $1.7^{+1.6}_{-0.9}$          |
| CR9 | $0.66^{+0.14}_{-0.20}$          | $1.6^{+1.6}_{-0.9}$          |

CR1, так как фоновый процесс  $W(\to e\nu)$  + jets не является доминирующим в соответствующей SR1 (Таблица 8.4), и, соответственно, W CR1 не определена. Дополнительно, в Приложении И приведены таблицы чисел событий в CR, SR и VR после фита фоновых процессов в CR.

Графики ранжирования источников систематических неопределенностей и корреляционные матрицы находятся в Приложении Л. Наблюдаемая асимметрия параметра  $\mu$  обусловлена асимметрией источников систематических неопределенностей. Этот эффект наблюдается, например, в Таблице К.28 для второй сигнальной области, SR2, где число событий доминирующего фонового процесса  $W(\rightarrow e\nu)$  + jets возрастает независимо от направления смещения ( $\pm \sigma$ ) источника систематики, связанного с реконструкцией массы тяжелой коллимированной струи (Fat Jet Mass Baseline), что приводит к уменьшению значения силы сигнала при вариациях источника неопределенности в любом направлении (Рисунок Л.2, *a*).

Таблица 8.2. Числа событий в W CR поиска e<sup>\*</sup> в конечном состоянии еи J. Для каждой контрольной области CRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате одновременного фита в SRi и CRi. W CR2 и W CR3 идентичны и скомбинированы в одну колонку, так как вторая и третья области отличаются только на условие отбора  $\left| \Delta \phi(e, ec{E}_{\mathrm{T}}^{\mathrm{miss}}) 
ight|,$ которое не применяется в W CR.

| Числа событий           | CR2/CR3       | CR4            | CR5            | CR6            | CR7            | CR8           | CR9            |
|-------------------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Наблюдено               | 9198          | 9168           | 0606           | 7312           | 4760           | 2903          | 1834           |
| $\Phi_{ m OH}$          | $9200\pm100$  | $9170 \pm 100$ | $9090 \pm 100$ | $7310\pm90$    | $4800 \pm 300$ | $2900 \pm 60$ | $1830 \pm 50$  |
| $W \to e\nu$            | $5900\pm400$  | $5700\pm600$   | $5300\pm600$   | $4900 \pm 400$ | $3500\pm500$   | $1600\pm400$  | $1000 \pm 300$ |
| $Z/\gamma^* \to ee$     | $24 \pm 13$   | $19 \pm 11$    | $14 \pm 8$     | $10\pm 5$      | $6\pm 3$       | $4 \pm 2$     | $2.1 \pm 0.9$  |
| $t\overline{t}$         | $1200\pm300$  | $1300\pm500$   | $1700\pm600$   | $700 \pm 400$  | $100 \pm 200$  | $500 \pm 400$ | $300 \pm 200$  |
| Single-t                | $210 \pm 20$  | $200 \pm 20$   | $200 \pm 20$   | $149 \pm 11$   | $97\pm 6$      | $61 \pm 5$    | $40 \pm 4$     |
| <b>Fake-электроны</b>   | $460\pm120$   | $450 \pm 120$  | $430\pm110$    | $370 \pm 90$   | $220 \pm 50$   | $140 \pm 40$  | $80 \pm 20$    |
| AA                      | $560\pm110$   | $550\pm110$    | $550 \pm 110$  | $450 \pm 100$  | $310\pm70$     | $200 \pm 40$  | $120 \pm 30$   |
| $W 	o 	au_{}$           | $800 \pm 200$ | $800 \pm 200$  | $800 \pm 200$  | $700 \pm 200$  | $460\pm110$    | $310\pm80$    | $210 \pm 60$   |
| $Z/\gamma^* 	o 	au 	au$ | $160 \pm 50$  | $160 \pm 50$   | $160 \pm 50$   | $120 \pm 30$   | $80 \pm 20$    | $50 \pm 20$   | $28\pm 8$      |

| дены наблюдаемые              |                     |
|-------------------------------|---------------------|
| й области CRi приве,          | фита в СRi и SRi.   |
| я каждой контрольнс           | тате одновременного |
| ом состоянии <i>еи J</i> . Дл | полученных в резуль |
| ЗR поиска $e^*$ в конечн      | фоновых процессов,  |
| Числа событий в $t\bar{t}$ С  | ий и оценки вкладов |
| Таблица 8.3.                  | числа событ         |

| Числа событий           | CR1           | CR2           | CR3             | CR4           | CR5           | CR6               | CR7           | CR8             | CR9             |
|-------------------------|---------------|---------------|-----------------|---------------|---------------|-------------------|---------------|-----------------|-----------------|
| Наблюдено               | 48            | 73            | 94              | 54            | 62            | 29                | 6             | 10              | 4               |
| Фон                     | $48\pm7$      | $73 \pm 9$    | $94 \pm 10$     | $54\pm 8$     | $62\pm 8$     | $29\pm 6$         | $9\pm 3$      | $10\pm 3$       | $4\pm 2$        |
| $W \to e\nu$            | $0.3 \pm 0.2$ | $4\pm3$       | $5\pm 3$        | $5\pm 4$      | $5 \pm 4$     | $5\pm 4$          | $4\pm 3$      | $0.11 \pm 0.12$ | $0.04 \pm 0.03$ |
| $Z/\gamma^* \to ee$     | $0.3 \pm 0.2$ | $0.30\pm0.11$ | $0.4 \pm 0.2$   | $0.15\pm0.14$ | $0.2 \pm 0.2$ | $0.10\pm0.05$     | $0.04\pm0.04$ | $0.02 \pm 0.02$ | $0.010\pm0.010$ |
| $t \bar{t}$             | $47 \pm 7$    | $64 \pm 9$    | $79 \pm 11$     | $41 \pm 9$    | $46 \pm 9$    | $15\pm7$          | $1\pm 2$      | $7 \pm 4$       | $4 \pm 2$       |
| Single-t                | $0.4 \pm 0.5$ | $2.5\pm1.1$   | $4.8\pm1.3$     | $6\pm 2$      | $6\pm 2$      | $6\pm 2$          | $2.6\pm1.4$   | $1.1 \pm 0.5$   | $0.4 \pm 0.3$   |
| <b>Fake-электроны</b>   | I             | $2.2 \pm 0.8$ | $5\pm 2$        | $2.0\pm0.8$   | $5\pm 2$      | $2.5\pm0.9$       | $1.8\pm0.7$   | $1.6 \pm 0.6$   | Ι               |
| $\Lambda\Lambda$        | I             | I             | I               | $0.13\pm0.06$ | $0.13\pm0.10$ | $0.13\pm0.10$     | I             | I               | Ι               |
| $Z/\gamma^* 	o 	au 	au$ | I             | $0.02\pm0.02$ | $0.06 \pm 0.03$ | $0.04\pm0.02$ | $0.04\pm0.02$ | $0.020 \pm 0.010$ | I             | I               |                 |

## 8.3. Результаты поиска возбужденных электронов

Числа событий в SR, предсказываемые для фоновых процессов после максимизации LF в предположении гипотезы  $H_0$  в CR и SR, приведены в Таблице 8.4 в сравнении с числами событий, измеренными на реальных данных. При вычислении неопределенностей предсказанных чисел событий в SR были учтены все корреляции между мешающими параметрами.

Как видно из Таблицы 8.4, поведение фоновых процессов  $t\bar{t}$  и Single-t в SR различается: вклад процесса  $t\bar{t}$  уменьшается до пренебрежительно малых значений при увеличении номера сигнальной области, в то время как вклад процесса Single-t практически постоянен в трех последних SR (SR 7–9). Этот эффект объясняется статистической флуктуацией при моделировании процесса Wt, в результате которой несколько событий с большим значением  $m_{\rm T}^{\nu J}$  прошли отборы каждой SR 7–9.

На Рисунке 8.1, *а* показаны значения  $p_0$  в поиске возбужденных электронов для моделей сигнала с  $m_{e^*} = 100$  ГэВ – 4 ТэВ. Значительных отклонений реальных данных от предсказаний Стандартной модели не наблюдается. Все отклонения лежат в пределах 1 $\sigma$  для всех сигнальных областей. Полученные ограничения сверху (UL) на параметр силы сигнала  $\mu$  и сечение рождения  $e^*$ , умноженное на вероятность распада  $e^* \rightarrow \nu W$ ,  $\sigma \times \mathcal{B}$ , в зависимости от  $m_{e^*}$ показаны на Рисунках 8.1,  $\delta$  и 8.1,  $\epsilon$ , соответственно. Причиной флуктуаций, которые наблюдаются на Рисунках 8.1,  $\delta$  и 8.1,  $\epsilon$  при  $m_{e^*} < 1$  ТэВ, является независимая оптимизация условий отбора для каждой массовой точки (Раздел 6.2).

Ограничение снизу (LL) на параметр составленности  $\Lambda$  при каждом заданном  $m_{e^*}$  является решением Уравнения 8.3:

$$\mu^{\mathrm{UL}}(m_{e^*}) = \left(\frac{\Lambda^{\mathrm{Nom.}}}{\Lambda^{\mathrm{LL}}}\right)^4 \frac{\mathcal{B}(e^* \to \nu W; m_{e^*}; \Lambda^{\mathrm{LL}})}{\mathcal{B}(e^* \to \nu W; m_{e^*}; \Lambda^{\mathrm{Nom.}})}.$$
(8.3)

Ограничение снизу на  $\Lambda$  в зависимости от  $m_{e^*}$ , полученное для конечного состо-

Таблица 8.4. Числа событий в сигнальных областях поиска e<sup>\*</sup> в конечном состоянии evJ. Для каждой сигнальной области SRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате совместного фита в СRi и SRi.

| Числа событий              | SR1             | SR2           | SR3           | SR4           | SR5           | SR6             | SR7           | SR8             | SR9             |
|----------------------------|-----------------|---------------|---------------|---------------|---------------|-----------------|---------------|-----------------|-----------------|
| Наблюдено                  | 13              | 25            | 39            | 35            | 43            | 34              | 15            | 16              | ×               |
| $\Phi_{ m OH}$             | $13\pm 5$       | $17\pm 5$     | $26\pm 8$     | $25\pm 5$     | $34\pm 8$     | $30\pm 6$       | $12 \pm 4$    | $8\pm 2$        | $6\pm 2$        |
| $W \to e\nu$               | $2\pm 2$        | $7\pm 3$      | $11 \pm 4$    | $13\pm3$      | $14\pm 5$     | $17 \pm 4$      | $7\pm 3$      | $3.2 \pm 1.3$   | $2.2 \pm 1.1$   |
| $Z/\gamma^*  ightarrow ee$ | $1.3 \pm 1.2$   | $1.6\pm1.1$   | $2.1\pm1.3$   | $1.7\pm1.0$   | $1.4 \pm 0.9$ | $0.6\pm0.3$     | $0.14\pm0.10$ | $0.10\pm0.05$   | $0.04 \pm 0.03$ |
| $t\overline{t}$            | $2.9 \pm 1.2$   | $5\pm 2$      | $7\pm 3$      | $4\pm 3$      | $11\pm 5$     | $3\pm 2$        | $0.1\pm0.3$   | $1\pm 2$        | $0.4 \pm 0.7$   |
| Single-t                   | $0.7\pm0.3$     | $1.9\pm0.5$   | $2.6\pm0.6$   | $3.0 \pm 1.4$ | $3.0 \pm 1.4$ | $4\pm 2$        | $1.9\pm0.7$   | $1.9\pm0.6$     | $1.7\pm0.7$     |
| <b>Fake-электроны</b>      | $6\pm 2$        | $1.9\pm0.3$   | $3.2 \pm 1.0$ | $0.6\pm0.3$   | $0.25\pm0.07$ | $0.7\pm0.3$     | $0.06\pm0.11$ | I               | I               |
| AA                         | $0.0\pm1.1$     | $0.2 \pm 1.1$ | $1\pm 2$      | $2.9\pm0.9$   | $3.4\pm0.7$   | $3\pm 2$        | $2\pm 3$      | $1.1 \pm 1.1$   | $1.1 \pm 1.1$   |
| $W 	o 	au \nu$             | I               | I             | $0.0\pm0.5$   | $0.1\pm0.2$   | $0.34\pm0.10$ | $0.2\pm0.6$     | $0.21\pm0.09$ | $0.21 \pm 0.08$ | $0.20 \pm 0.09$ |
| $Z/\gamma^* 	o 	au 	au$    | $0.04 \pm 0.02$ | $0.04\pm0.02$ | $0.06\pm0.03$ | $0.03\pm0.02$ | $0.08\pm0.06$ | $0.06 \pm 0.05$ | $0.05\pm0.06$ | $0.1\pm0.2$     | Ι               |



Рис. 8.1. Значение  $p_0(a)$ , ограничения сверху на  $\mu(\delta)$  и  $\sigma \times \mathcal{B}(s)$  в зависимости от  $m_{e^*}$ . Полосы неопределенностей в  $\pm 1(2)\sigma((\delta)$  и (s)) вокруг ожидаемого предела включают все источники систематических и статистических неопределенностей.

яния  $e\nu J$  на уровне значимости CL = 95% методом доверительных интервалов CL<sub>s</sub> [133], показано на Рисунке 8.2, а. На Рисунке 8.2, б показано ограничение снизу на  $\Lambda$ , полученное для конечного состояния eejj [7] другими авторами в анализе данных эксперимента ATLAS, проведенном параллельно с поиском в конечном состоянии  $e\nu J^3$ . Информация из обоих поисков использована для построения единой функции LF в каждой массовой точке  $m_{e^*}$  для получения комбинированного нижнего ограничения на Л. При построении LF учтены корреляции эффектов систематических неопределенностей. Комбинированное ограничение показано на Рисунке 8.2, в вместе с индивидуальными ограничениями, полученными для конечных состояний  $e\nu J$  и eejj, а также ограничением на  $\Lambda,$  полученным коллаборацией ATLAS в поиске одиночного рождения  $e^*$  с последующим распадом  $e^* \to e\gamma$  при  $\sqrt{s} = 8$  ТэВ [27]. Ограничение снизу на  $\Lambda$  для значений  $m_{e^*} \leq 1.5$  ТэВ приблизительно равно 11 ТэВ, при значениях  $m_{e^*} = 4$  ТэВ ограничение падает до 7 ТэВ. На характерной границе применимости эффективной теории поля для вычисления сечения одиночного рождения  $e^*, m_{e^*} = \Lambda$ , значения  $m_{e^*} < 4.8$  ТэВ исключены. Комбинация поисков одиночного рождения  $e^*$  в конечных состояниях  $e\nu J$  и eejj позволила значительно улучшить ограничения на масштаб составленности Л по сравнению с результатами, полученными в LHC Run I в экспериментах ATLAS и CMS [28; 32].

## 8.4. Результаты поиска дибозонных резонансов

Наблюдаемые числа событий в SR поиска дибозонных резонансов в конечном состоянии  $\ell \nu j j / J$  и оценка фоновых процессов до фита показаны в Таблице 8.5.

На Рисунке 8.3, a показаны значения  $p_0$  для сигнальных моделей  $G^*$  и W', полученные при комбинации электронного и мюонного каналов. Все от-

<sup>&</sup>lt;sup>3</sup> Поиск возбужденного электрона в конечном состоянии eejj не является непосредственным предметом диссертационной работы и упоминается только в контексте получения комбинированного ограничения на  $\Lambda$ .



(a)  $\Lambda^{\text{LL}}$ , полученное в конечном состоянии  $e\nu J$ .

 $(\delta)$   $\Lambda^{\text{LL}}$ , полученное в конечном состоянии eejj.



(в) Ограничение снизу на  $\Lambda$ , полученное комбинацией конечных состояний  $e\nu J$  и eejj.

Рис. 8.2. Ограничения снизу на  $\Lambda$  в зависимости от  $m_{e^*}$  для конечных состояний  $e\nu J$  (a), eejj (b) и в результате их комбинации (c). Полосы неопределенностей в  $\pm 1(2)\sigma$  ((b) и (c)) вокруг ожидаемого ограничения получены с учетом всех источников систематических и статистических неопределенностей. Ограничения при  $m_{e^*} > 4$  ТэВ получены экстраполяцией. На Рисунке 8.2, в голубыми штрих-пунктирными линиями показаны наблюдаемые ограничения, полученные индивидуально в конечных состояниях  $e\nu J$  (см. (a)) и eejj (см. (b)). Красной пунктирной линией показано ограничение на  $\Lambda$ , полученное коллаборацией ATLAS в поиске одиночного рождения  $e^*$  с последующим распадом  $e^* \rightarrow e\gamma$  в столкновениях pp при  $\sqrt{s} = 8$  ТэВ с интегральной светимостью 13  $\phi 6^{-1}$  [27].

| аблица 8.5. Числа событий в сигнальных областях LRR, HRR и MR поиска дибозонных резонансов. Для каждой сигнальной области   |
|-----------------------------------------------------------------------------------------------------------------------------|
| гриведены наблюдаемое число событий, предсказания вкладов фоновых процессов и ожидаемые числа событий для моделей сигнала   |
| ождения G* и W'. Неопределенности вычислены до фита. Для суммарной оценки фона и сигналов приведены полные статистические и |
| истематические неопределенности. Для отдельных фоновых процессов показаны только систематические неопределенности. Для LRR, |
| IRR, MR использованы сигнальные гипотезы с массами резонансов $G^*$ и $W'$ , равных 400, 800 и 1200 ГэВ, соответственно.    |
|                                                                                                                             |

| событий        | LRR               | HRR          | MR             |
|----------------|-------------------|--------------|----------------|
| jets           | $104800 \pm 1600$ | $415 \pm 10$ | $180 \pm 20$   |
| ıgle- <i>t</i> | $37700\pm1600$    | $271\pm13$   | $42\pm7$       |
| ектроны        | $13500\pm500$     | $84\pm9$     | $29.3 \pm 2.9$ |
|                | $5500 \pm 270$    | $9\pm 6$     | $43 \pm 7$     |
|                | $161500 \pm 2300$ | $870 \pm 40$ | $295 \pm 22$   |
| цено           | 157837            | 801          | 323            |
| G*             | $7000 \pm 500$    | $36\pm 6$    | $5.5\pm2.3$    |
| M'             | $6800\pm600$      | $318\pm21$   | $70 \pm 4$     |

клонения данных от предсказаний Стандартной модели лежат в пределах  $1\sigma$ для всех массовых гипотез сигнальных моделей. На Рисунках 8.3,  $\delta$  и 8.3,  $\epsilon$ приведены ограничения сверху на сечения рождения RS1  $G^*$  и EGM W', умноженные на вероятности распадов в WW и WZ, в зависимости от  $m_{G^*}$  и  $m_{W'}$ , соответственно, с 95% уровнем значимости. Кроме того, на рисунках показаны теоретические предсказания для моделей EGM W' с константой связи c = 1 и RS1  $G^*$  с  $k/M_{\rm Pl} = 1$ .

События рождения дибозонных резонансов не обнаружены, получены ограничения сверху на уровне значимости 95% на  $\sigma \times \mathcal{B}$  в зависимости от масс  $G^*$  и W'. На уровне значимости 95% исключены значения массы тяжелого гравитона модели RS1  $m_{G^*} < 760$  ГэВ и массы W'-бозона модели EGM  $m_{W'} < 1490$  ГэВ. Полученные результаты значительно превосходят предыдущие, полученные на детекторе ATLAS при  $\sqrt{s} = 7$  ТэВ в таком же конечном состоянии [35].



Рис. 8.3. Значение  $p_0(a)$ , наблюдаемые и ожидаемые с 95% CL ограничения сверху на  $\sigma \times \mathcal{B}$ в зависимости от масс RS1  $G^*(\delta)$  и EGM W'(e), полученные в поиске дибозонных резонансов. Теоретические сечения рождения  $G^*(W')$  вычислены в приближении LO (NNLO). Полосы неопределенностей в  $\pm 1(2)\sigma((\delta)$  и (e)) вокруг ожидаемого ограничения вычислены с учетом всех источников систематических и статистических неопределенностей. Полоса вокруг теоретической кривой сечения рождения W' отражает теоретическую неопределенность вычислений в приближении NNLO.

# Заключение

В данной диссертационной работе получены следующие результаты:

- Обоснован выбор полулептонного конечного состояния с электроном, нейтрино и W-бозоном, распадающимся в адроны, (evJ) для поиска возбужденных электронов на данных, полученных на детекторе ATLAS на LHC в протон–протонных столкновениях с √s = 13 ТэВ.
- Смоделированы и проверены на достоверность сигнальные наборы данных для поиска возбужденных электронов в событиях с электроном, нейтрино и W-бозоном.
- 3. Оптимизированы условия отбора объектов и первичный отбор событий в поиске возбужденных электронов в конечном состоянии  $e\nu J$  в протон–протонных столкновениях с  $\sqrt{s} = 13$  ТэВ в детекторе ATLAS.
- 4. Оценен вклад фоновых процессов в поиске возбужденных электронов в событиях  $e\nu J$  в протон–протонных столкновениях в детекторе ATLAS при  $\sqrt{s} = 13$  ТэВ.
- Выбраны дискриминирующие переменные и построены сигнальные, контрольные и проверочные области в поиске возбужденных электронов в событиях *еvJ* в протон–протонных взаимодействиях при √s = 13 ТэВ.
- 6. Получена оценка систематических неопределенностей в поиске возбужденных электронов в событиях  $e\nu J$  на данных, полученных на детекторе ATLAS на LHC в протон–протонных столкновениях с  $\sqrt{s} = 13$  ТэВ.
- 7. Проведен статистический анализ для проверки модели рождения возбужденных электронов с конечным состоянием  $e\nu J$  на данных, полученных в протон–протонных столкновениях с  $\sqrt{s} = 13$  ТэВ в детекторе ATLAS на LHC с полной интегральной светимостью  $\mathcal{L}_{int} = 36.1 \text{ ф6}^{-1}$ . Отклонения

реальных данных от предсказаний Стандартной модели обнаружены не были, отклонения лежат в пределах  $1\sigma$  для всех значений  $m_{e^*}$  в модели сигнала. Поставлены ограничения сверху на параметры сигнальной модели: силу сигнала,  $\mu$ , и сечение одиночного рождения  $e^*$ , умноженное на вероятность распада  $e^* \rightarrow \nu W$ ,  $\sigma \times \mathcal{B}$ , в зависимости от значения  $m_{e^*}$ . Из ограничений на  $\mu$  и  $\sigma \times \mathcal{B}$  получено ограничение снизу на масштаб составленности  $\Lambda$  в зависимости от  $m_{e^*}$ . Скомбинированы результаты поисков возбужденных электронов в конечных состояниях  $e\nu J$  и eejj. Это позволило установить нижнее ограничение с 95% уровнем значимости на  $\Lambda$ , равный 11 ТэВ для  $m_{e^*} \leq 1.5$  ТэВ, и 7 ТэВ для  $m_{e^*} = 4$  ТэВ, а в специальном случае  $m_{e^*} = \Lambda$ , исключить массы меньше 4.8 ТэВ. Комбинация двух конечных состояний позволила усилить ограничения по сравнению с результатами, полученными в LHC Run I на детекторах ATLAS и CMS.

8. Оптимизированы условия отбора объектов и первичный отбор событий в поиске дибозонных резонансов в конечном состоянии с лептоном (электроном или мюоном), нейтрино и струями на данных, полученных на детекторе ATLAS в протон–протонных столкновениях при  $\sqrt{s} = 8$  ТэВ.

# Благодарности

По результатам работы выражаю искреннюю благодарность рабочему коллективу НИЦ "Курчатовский Институт" — ИФВЭ, а именно научному руководителю — Алексею Григорьевичу Мягкову, соавторам работы по поиску возбужденных электронов — Андрею Александровичу Каменщикову и Олегу Валентиновичу Зенину, за оказанную помощь на всех этапах подготовки диссертации.

Кроме того, благодарю группу Отделения математики и вычислительной техники (OMBT), в лице Виктора Витальевича Котляра за своевременное качественное обеспечение вычислительными мощностями кластера НИЦ "Курчатовский Институт" — ИФВЭ и технической поддержкой.

Помимо этого, работа не состоялась бы без участия всего научного коллектива коллаборации ATLAS.

# Список сокращений и условных обозначений

| CI                   | — контактное взаимодействие.                            |
|----------------------|---------------------------------------------------------|
| CL                   | — уровень значимости.                                   |
| CLs                  | — метод доверительных интервалов.                       |
| CR                   | — контрольные области.                                  |
| $\operatorname{CSC}$ | — катодные стриповые камеры.                            |
| DAQ                  | — система сбора данных.                                 |
| EF                   | — фильтр событий.                                       |
| EGM                  | — расширенная калибровочная модель.                     |
| EL                   | — возбужденный электрон.                                |
| EM                   | — жидкоаргонный электромагнитный калориметр.            |
| EW                   | — электрослабое взаимодействие.                         |
| FSR                  | — излучение в конечном состоянии.                       |
| GM                   | — калибровочное взаимодействие.                         |
| HLT                  | — триггер высокого уровня.                              |
| HRR                  | — сигнальная область с двумя разрешенными высокоэнерге- |
|                      | тическими струями в поиске дибозонных резонансов.       |
| ID                   | — внутренний детектор.                                  |
| ISR                  | — излучение в начальном состоянии.                      |
| KK                   | — Калуца–Клейн.                                         |
| L1                   | — триггер первого уровня.                               |
| L2                   | — триггер второго уровня.                               |
| LAr                  | — жидкоаргонный электромагнитный калориметр.            |
| LAr FCal             | — передний LAr калориметр.                              |
| LAr HEC              | — адронный торцевой LAr калориметр.                     |
| LF                   | — функция правдоподобия.                                |
| LO                   | — ведущий порядок.                                      |
| LRR                  | — сигнальная область с двумя разрешенными низкоэнерге-  |

| MDT | <br>мониторируемые  | дрейфовые | трубки     |
|-----|---------------------|-----------|------------|
|     | <b>1 1</b> <i>V</i> |           | <b>1</b> V |

- МЕ матричный элемент.
- ММ матричный метод.
- MR сигнальная область с одной коллимированной высокоэнергетической струей в поиске дибозонных резонансов.
- MS мюонный спектрометр.
- NLO следующий за ведущим порядок.
- NLO + NNLL следующий за ведущим порядок с поправками второго после ведущего логарифмического приближения.
- NNLL второе после ведущего логарифмическое приближение.
- NNLO второй после ведущего порядок.
- NP мешающий параметр.
- PDF функция распределения партонов.
- Pile-up множественность протон–протонных столкновений в одном пересечении протонных сгустков.
- PS партонные ливни.
- РV первичная вершина.
- ROI область интереса.
- RPC мюонные резистивные плоские камеры.
- RS1 расширенная модель Рэндалл-Сандрума.
- Run I первый период сбора данных.
- Run II второй период сбора данных.
- SCT кремниевый детектор.
- SF поправочные коэффициенты.
- SM Стандартная модель.
- SR сигнальные области.
- TDAQ система триггеров и сбора данных.

- TileCal адронный сцинтилляционный калориметр.
- TRT детектор переходного излучения.
- VR проверочные области.
- VV дибозонный резонанс.

## Список литературы

- Baur U., Spira M., Zerwas P. M. Excited-quark and -lepton production at hadron colliders // Phys. Rev. D. - 1990. - T. 42. - C. 815-824. - DOI: 10.1103/PhysRevD.42.815.
- Warped Gravitons at the CERN LHC and beyond / K. Agashe [и др.] // Phys. Rev. D. - 2007. - Т. 76. - С. 036006. - DOI: 10.1103/PhysRevD. 76.036006. - arXiv: hep-ph/0701186 [hep-ph].
- G. Altarelli B. M., Ruiz-Altaba M. Searching for new heavy vector bosons in pp̄ colliders // Z. Phys. C. - 1989. - T. 45. - C. 109. - DOI: 10.1007/ BF01556677.
- 4. Cheremushkina E. Semileptonic WW/WZ resonance search at  $\sqrt{s} = 8$  TeV with the ATLAS detector at the LHC. -2015. Cehr. URL: https://cds.cern.ch/record/2049868.
- 5. Cheremushkina E. Semileptonic (lepton, neutrino and jets) WW/WZ resonances searches at √s = 8 and 13 TeV with the ATLAS detector at the LHC // Phys. Part. Nucl. 2017. T. 48, № 5. 752-754. 3 p. DOI: 10.1134/ S1063779617050100. URL: https://cds.cern.ch/record/2304070.
- Milic A. Searches for new phenomena in final states involving leptons and jets using the ATLAS detector. — 2019. — Июль. — URL: https://cds. cern.ch/record/2684390.
- 7. ATLAS Collaboration. Search for excited electrons singly produced in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the LHC // Eur. Phys. J. C. 2019. T. 79, № 9. C. 803. DOI: 10.1140/epjc/s10052-019-7295-1. arXiv: 1906.03204 [hep-ex].
- 8. ATLAS Collaboration. Search for production of WW/WZ resonances decaying to a lepton, neutrino and jets in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS

detector // Eur. Phys. J. C. - 2015. - T. 75, № 5. - C. 209. - DOI: 10. 1140/epjc/s10052-015-3593-4,10.1140/epjc/s10052-015-3425-6. arXiv: 1503.04677 [hep-ex]. - [Erratum: Eur. Phys. J.C75,370(2015)].

- Cheremushkina E. Semileptonic (lepton, neutrino and jets) WW/WZ resonances search at √s = 8 TeV with the ATLAS detector at the LHC : тех. отч. / CERN. — Geneva, 12.2015. — ATL-PHYS-PROC-2015—171. — DOI: oai : cds.cern.ch:2111163. — URL: https://cds.cern.ch/record/2111163.
- 10. Pati J. C., Salam A. Lepton number as the fourth "color" // Phys. Rev. D. 1974. T. 10. C. 275-289. DOI: 10.1103/PhysRevD.10.275. Erratum: // Phys. Rev. D. 1975. T. 11. C. 703. DOI: 10.1103/PhysRevD.11.703.2.
- Kayser B., Shrock R. E. Distinguishing between Dirac and Majorana neutrinos in neutral-current reactions // Phys. Lett. B. - 1982. - T. 112. - C. 137-142. - DOI: 10.1016/0370-2693(82)90314-8.
- Eichten E., Lane K. D., Peskin M. E. New Tests for Quark and Lepton Substructure // Phys. Rev. Lett. - 1983. - T. 50. - C. 811-814. - DOI: 10.1103/PhysRevLett.50.811.
- Cabibbo N., Maiani L., Srivastava Y. Anomalous Z decays: excited leptons? // Phys. Lett. B. - 1984. - T. 139. - C. 459-463. - DOI: 10.1016/0370-2693(84)91850-1.
- Hagiwara K., Zeppenfeld D., Komamiya S. Excited lepton production at LEP and HERA // Z. Phys. C. - 1985. - T. 29. - C. 115. - DOI: 10.1007/ BF01571391.
- 15. Unitarity bounds for 4-fermion contact interactions / Т. В. Anders [и др.] // Found. Phys. - 1993. - Т. 23. - С. 399-410. - DOI: 10.1007/BF01883720.

- 16. ALEPH Collaboration. Search for excited leptons at 130–140 GeV // Phys. Lett. B. - 1996. - T. 385. - C. 445-453. - DOI: 10.1016/0370-2693(96) 00961-6.
- 17. OPAL Collaboration. Search for unstable heavy and excited leptons at LEP2 //
   Eur. Phys. J. C. 2000. T. 14. C. 73-84. DOI: 10.1007/s100520000345. arXiv: hep-ex/0001056 [hep-ex].
- L3 Collaboration. Search for excited leptons at LEP // Phys. Lett. B. –
   2003. T. 568. C. 23-34. DOI: 10.1016/j.physletb.2003.05.004. arXiv: hep-ex/0306016 [hep-ex].
- 19. DELPHI Collaboration. Search for excited leptons in e<sup>+</sup>e<sup>-</sup> collisions at √s = 189–209 GeV // Eur. Phys. J. C. 2006. T. 46. C. 277–293. DOI: 10.1140/epjc/s2006-02501-3. arXiv: hep-ex/0603045 [hep-ex].
- 20. ZEUS Collaboration. Searches for excited fermions in *ep* collisions at HERA // Phys. Lett. B. 2002. T. 549. C. 32-47. DOI: 10.1016/S0370-2693(02)02863-0. arXiv: hep-ex/0109018 [hep-ex].
- 21. H1 Collaboration. Search for excited electrons in *ep* collisions at HERA // Phys. Lett. B. - 2008. - T. 666. - C. 131-139. - DOI: 10.1016/j. physletb.2008.07.014. - arXiv: 0805.4530 [hep-ex].
- 22. CDF Collaboration. Search for Excited and Exotic Electrons in the eγ Decay Channel in pp̄ collisions at √s = 1.96 TeV // Phys. Rev. Lett. 2005. T. 94. C. 101802. DOI: 10.1103/PhysRevLett.94.101802. arXiv: hep-ex/0410013 [hep-ex].
- 23. *CDF Collaboration*. Search for Excited and Exotic Muons in the  $\mu\gamma$  Decay Channel in  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV // Phys. Rev. Lett. - 2006. -T. 97. - C. 191802. - DOI: 10.1103/PhysRevLett.97.191802. - arXiv: hep-ex/0606043 [hep-ex].

- 24. D0 Collaboration. Search for excited muons in  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV // Phys. Rev. D. -2006. - T. 73. - C. 111102. - DOI: 10.1103/PhysRevD.73.111102. - arXiv: hep-ex/0604040 [hep-ex].
- 25. D0 Collaboration. Search for excited electrons in  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV // Phys. Rev. D. -2008. - T. 77. - C. 091102. - DOI: 10.1103/PhysRevD. 77.091102. - arXiv: 0801.0877 [hep-ex].
- 26. ATLAS Collaboration. Search for excited leptons in proton-proton collisions at √s = 7 TeV with the ATLAS detector // Phys. Rev. D. 2012. T. 85. C. 072003. DOI: 10.1103/PhysRevD.85.072003. arXiv: 1201.3293 [hep-ex].
- 27. ATLAS Collaboration. Search for excited electrons and muons in  $\sqrt{s} = 8$  TeV proton-proton collisions with the ATLAS detector // New J. Phys. -2013. T. 15. C. 093011. DOI: 10.1088/1367-2630/15/9/093011. arXiv: 1308.1364 [hep-ex].
- 28. ATLAS Collaboration. Search for new phenomena in events with three or more charged leptons in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector // JHEP. 2015. T. 08. C. 138. DOI: 10.1007/JHEP08(2015)138. arXiv: 1411.2921 [hep-ex].
- 29. ATLAS Collaboration. A search for an excited muon decaying to a muon and two jets in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector // New J. Phys. - 2016. - T. 18, Nº 7. - C. 073021. - DOI: 10.1088/1367-2630/18/7/073021. - arXiv: 1601.05627 [hep-ex].
- 30. CMS Collaboration. A search for excited leptons in pp collisions at √s = 7 TeV // Phys. Lett. B. 2011. T. 704. C. 143-162. DOI: 10.1016/j.physletb.2011.09.021. arXiv: 1107.1773 [hep-ex].

- 31. CMS Collaboration. Search for excited leptons in pp collisions at √s = 7 TeV // Phys. Lett. B. 2013. T. 720. C. 309-329. DOI: 10.1016/j. physletb.2013.02.031. arXiv: 1210.2422 [hep-ex].
- 32. CMS Collaboration. Search for excited leptons in proton-proton collisions at  $\sqrt{s} = 8$  TeV // JHEP. 2016. T. 03. C. 125. DOI: 10.1007/JHEP03(2016)125. arXiv: 1511.01407 [hep-ex].
- 33. CMS Collaboration. Search for excited leptons in  $\ell\ell\gamma$  final states in protonproton collisions at  $\sqrt{s} = 13$  TeV // JHEP. - 2019. - T. 04. - C. 015. - DOI: 10.1007/JHEP04(2019)015. - arXiv: 1811.03052 [hep-ex].
- 34. Particle Data Group. Review of Particle Physics // Phys. Rev. D. 2018. T. 98, № 3. C. 030001. DOI: 10.1103/PhysRevD.98.030001.
- 35. ATLAS Collaboration. Search for resonant diboson production in the WW/WZ
  → ℓνjj decay channels with the ATLAS detector at √s = 7 TeV // Phys.
  Rev. D. 2013. T. 87, № 11. C. 112006. DOI: 10.1103/PhysRevD.
  87.112006. arXiv: 1305.0125 [hep-ex].
- 36. ATLAS Collaboration. Search for WZ resonances in the fully leptonic channel using pp collisions at √s = 8 TeV with the ATLAS detector // Phys. Lett. B. 2014. T. 737. C. 223-243. DOI: 10.1016/j.physletb.2014. 08.039. arXiv: 1406.4456 [hep-ex].
- 37. ATLAS Collaboration. Search for resonant diboson production in the  $\ell \ell q \bar{q}$  final state in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector // Eur. Phys. J. C. - 2015. - T. 75. - C. 69. - DOI: 10.1140/epjc/s10052-015-3261-8. - arXiv: 1409.6190 [hep-ex].
- 38. CMS Collaboration. Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at  $\sqrt{s} = 8$  TeV // JHEP. -2014. T. 08. C. 173. DOI: 10.1007/JHEP08(2014)173. arXiv: 1405.1994 [hep-ex].

- 39. CMS Collaboration. Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at √s = 8 TeV // JHEP. 2014. T. 08. C. 174. DOI: 10.1007/JHEP08(2014)174. arXiv: 1405.3447 [hep-ex].
- 40. ATLAS Collaboration. Combination of searches for WW, WZ, and ZZ resonances in pp collisions at √s = 8 TeV with the ATLAS detector // Phys. Lett.
  B. 2016. T. 755. C. 285-305. DOI: 10.1016/j.physletb.2016.
  02.015. arXiv: 1512.05099 [hep-ex].
- 41. ATLAS Collaboration. Search for diboson resonances with boson-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector // Phys. Lett. B. 2018. T. 777. C. 91–113. DOI: 10.1016/j.physletb.2017.12.011. arXiv: 1708.04445 [hep-ex].
- 42. ATLAS Collaboration. Searches for heavy ZZ and ZW resonances in the  $\ell \ell q q$  and  $\nu \nu q q$  final states in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector // JHEP. -2018. T. 03. C. 009. DOI: 10.1007/JHEP03(2018) 009. arXiv: 1708.09638 [hep-ex].
- 43. ATLAS Collaboration. Search for heavy resonances decaying into WW in the eνµν final state in pp collisions at √s = 13 TeV with the ATLAS detector // Eur. Phys. J. C. 2018. T. 78, № 1. C. 24. DOI: 10.1140/epjc/s10052-017-5491-4. arXiv: 1710.01123 [hep-ex].
- 44. ATLAS Collaboration. Search for WW/WZ resonance production in  $\ell\nu qq$ final states in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector // JHEP. -2018. - T. 03. - C. 042. - DOI: 10.1007/JHEP03(2018)042. arXiv: 1710.07235 [hep-ex].
- 45. ATLAS Collaboration. Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at  $\sqrt{s} = 13$  TeV with the ATLAS

detector // Phys. Lett. B. - 2018. - T. 787. - C. 68-88. - DOI: 10.1016/ j.physletb.2018.10.021. - arXiv: 1806.01532 [hep-ex].

- 46. ATLAS Collaboration. Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb<sup>-1</sup> of proton-proton collision data at √s = 13 TeV with the ATLAS detector // Phys. Rev. D. 2018. T. 98, № 5. C. 052008. DOI: 10.1103/PhysRevD.98.052008. arXiv: 1808.02380 [hep-ex].
- 47. ATLAS Collaboration. Search for diboson resonances in hadronic final states in 139 fb<sup>-1</sup> of pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector // JHEP. -2019. - T. 09. - C. 091. - DOI: 10.1007/JHEP09(2019)091. arXiv: 1906.08589 [hep-ex].
- 48. CMS Collaboration. Search for heavy gauge W' boson in events with an energetic lepton and large missing transverse momentum at  $\sqrt{s} = 13$  TeV // Phys. Lett. B. -2017. T. 770. C. 278-301. DOI: 10.1016/j. physletb.2017.04.043. arXiv: 1612.09274 [hep-ex].
- 49. CMS Collaboration. Search for high-mass resonances in final states with a lepton and missing transverse momentum at  $\sqrt{s} = 13$  TeV // JHEP. 2018. T. 06. C. 128. DOI: 10.1007/JHEP06(2018)128. arXiv: 1803.11133 [hep-ex].
- 50. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider // JINST. - 2008. - T. 3. - S08003. - DOI: 10.1088/1748-0221/3/08/S08003.
- 51. ATLAS Collaboration. Performance of the ATLAS trigger system in 2015 // Eur. Phys. J. C. - 2017. - T. 77, № 5. - C. 317. - DOI: 10.1140/epjc/ s10052-017-4852-3. - arXiv: 1611.09661 [hep-ex].

- 52. ATLAS Collaboration. The ATLAS Simulation Infrastructure // Eur. Phys.
  J. C. 2010. T. 70. C. 823-874. DOI: 10.1140/epjc/s10052-010-1429-9. - arXiv: 1005.4568 [physics.ins-det].
- 53. GEANT4 a simulation toolkit / S. Agostinelli [и др.] // Nucl. Instrum.
  Meth. A. 2003. Т. 506. С. 250—303. DOI: 10.1016/S0168-9002(03)
  01368-8.
- 54. ATLAS Collaboration. Performance of the ATLAS Trigger System in 2010 // Eur. Phys. J. C. - 2012. - T. 72. - C. 1849. - DOI: 10.1140/epjc/s10052-011-1849-1. - arXiv: 1110.1530 [hep-ex].
- 55. ATLAS Collaboration. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV // Eur. Phys. J. C. 2015. T. 75. C. 120. DOI: 10.1140/epjc/s10052-015-3325-9. arXiv: 1408.3179 [hep-ex].
- 56. An introduction to PYTHIA 8.2 / T. Sjöstrand [и др.] // Comput. Phys. Commun. — 2015. — Т. 191. — С. 159—177. — DOI: 10.1016/j.cpc.2015. 01.024. — arXiv: 1410.3012 [hep-ph].
- 57. Parton distributions with LHC data / NNPDF Collaboration, R. D. Ball [и др.] // Nucl. Phys. B. 2013. Т. 867. С. 244-289. DOI: 10.1016/ j.nuclphysb.2012.10.003. - arXiv: 1207.1303 [hep-ph].
- 58. ATLAS Collaboration. ATLAS Pythia 8 tunes to 7 TeV data : тех. отч. / CERN. — Geneva, 11.2014. — ATL-PHYS-PUB-2014—021. — URL: https: //cds.cern.ch/record/1966419.
- 59. Belyaev A., Christensen N. D., Pukhov A. CalcHEP 3.4 for collider physics within and beyond the Standard Model // Comput. Phys. Commun. - 2013. -T. 184. - C. 1729-1769. - DOI: 10.1016/j.cpc.2013.01.014. - arXiv: 1207.6082 [hep-ph].

- 60. Lange D. J. The EvtGen particle decay simulation package // Nucl. Instrum.
  Meth. A. 2001. T. 462. C. 152-155. DOI: 10.1016/S0168-9002(01)
  00089-4.
- 61. Hamberg R., Neerven W. L. van, Matsuura T. A complete calculation of the order α<sup>2</sup><sub>s</sub> correction to the Drell-Yan K-factor // Nucl. Phys. B. 1991. T. 359. C. 343-405. DOI: 10.1016/S0550-3213(02)00814-3,10. 1016/0550-3213(91)90064-5. [Erratum: Nucl. Phys.B644,403(2002)].
- 62. New generation of parton distributions with uncertainties from global QCD analysis / J. Pumplin [и др.] // JHEP. 2002. Т. 07. С. 012. DOI: 10.1088/1126-6708/2002/07/012. arXiv: hep-ph/0201195 [hep-ph].
- 63. Parton distributions for the LHC / A. D. Martin [и др.] // Eur. Phys. J. C. 2009. Т. 63. С. 189–285. DOI: 10.1140/epjc/s10052-009-1072- 5. arXiv: 0901.0002 [hep-ph].
- 64. Event generation with SHERPA 1.1 / T. Gleisberg [и др.] // JHEP. 2009. —
  T. 02. C. 007. DOI: 10.1088/1126-6708/2009/02/007. arXiv: 0811.4622 [hep-ph].
- 65. Parton distributions for the LHC Run II / NNPDF Collaboration, R. D. Ball [и др.] // JHEP. 2015. Т. 04. С. 040. DOI: 10.1007/JHEP04(2015)
  040. arXiv: 1410.8849 [hep-ph].
- 66. New parton distributions for collider physics / H.-L. Lai [и др.] // Phys. Rev.
  D. 2010. T. 82. C. 074024. DOI: 10.1103/PhysRevD.82.074024. arXiv: 1007.2241 [hep-ph].
- 67. Cascioli F., Maierhofer P., Pozzorini S. Scattering Amplitudes with Open Loops // Phys. Rev. Lett. - 2012. - T. 108. - C. 111601. - DOI: 10.1103/ PhysRevLett.108.111601. - arXiv: 1111.5206 [hep-ph].

- 68. Gleisberg T., Hoeche S. Comix, a new matrix element generator // JHEP. –
  2008. T. 12. C. 039. DOI: 10.1088/1126-6708/2008/12/039. –
  arXiv: 0808.3674 [hep-ph].
- 69. QCD matrix elements + parton showers. The NLO case / S. Hoeche [и др.] // JHEP. - 2013. - Т. 04. - С. 027. - DOI: 10.1007/JHEP04(2013)027. arXiv: 1207.5030 [hep-ph].
- 70. Li Y., Petriello F. Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code // Phys. Rev. D. 2012. T. 86. C. 094034. DOI: 10.1103/PhysRevD.86.094034. arXiv: 1208.5967 [hep-ph].
- 71. Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO / S. Catani [и др.] // Phys. Rev. Lett. 2009. Т. 103. C. 082001. DOI: 10.1103/PhysRevLett.103.082001. arXiv: 0903.2120 [hep-ph].
- Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms // JHEP. 2004. T. 11. C. 040. DOI: 10.1088/1126-6708/2004/11/040. arXiv: hep-ph/0409146.
- 73. Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method // JHEP. 2007. T. 11. C. 070. DOI: 10.1088/1126-6708/2007/11/070. arXiv: 0709. 2092 [hep-ph].
- 74. Frixione S., Nason P., Ridolfi G. A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction // JHEP. - 2007. - T. 09. -C. 126. - DOI: 10.1088/1126-6708/2007/09/126. - arXiv: 0707.3088 [hep-ph].
- 75. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX / S. Alioli  $[\mu \text{ др.}]$  // JHEP. 2010. -
T. 06. - C. 043. - DOI: 10.1007/JHEP06(2010)043. - arXiv: 1002.2581 [hep-ph].

- NLO single-top production matched with shower in POWHEG: s- and t-channel contributions / S. Alioli [и др.] // JHEP. 2009. Т. 09. С. 111. DOI: 10.1007/JHEP02(2010)011,10.1088/1126-6708/2009/09/111. arXiv: 0907.4076 [hep-ph]. [Erratum: JHEP02,011(2010)].
- 77. Re E. Single-top Wt-channel production matched with parton showers using the POWHEG method // Eur. Phys. J. 2011. T. C71. C. 1547. DOI: 10.1140/epjc/s10052-011-1547-z. arXiv: 1009.2450 [hep-ph].
- 78. Sjostrand T., Mrenna S., Skands P. Z. PYTHIA 6.4 physics and manual // JHEP. - 2006. - T. 05. - C. 026. - DOI: 10.1088/1126-6708/2006/05/ 026. - arXiv: hep-ph/0603175.
- 79. Skands P. Z. Tuning Monte Carlo generators: The Perugia tunes // Phys. Rev. D. - 2010. - T. 82. - C. 074018. - DOI: 10.1103/PhysRevD.82. 074018. - arXiv: 1005.3457 [hep-ph].
- Frixione S., Webber B. R. Matching NLO QCD computations and parton shower simulations // JHEP. - 2002. - T. 06. - C. 029. - DOI: 10.1088/ 1126-6708/2002/06/029. - arXiv: hep-ph/0204244 [hep-ph].
- 81. HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) / G. Corcella [и др.] // JHEP. 2001. Т. 01. С. 010. DOI: 10.1088/1126-6708/2001/01/010. arXiv: hep-ph/0011363 [hep-ph].
- Butterworth J. M., Forshaw J. R., Seymour M. H. Multiparton interactions in photoproduction at HERA // Z. Phys. C. - 1996. - T. 72. - C. 637-646. - DOI: 10.1007/BF02909195, 10.1007/s002880050286. - arXiv: hep-ph/9601371 [hep-ph].

- Kersevan B. P., Richter-Was E. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 // Comput. Phys. Commun. 2013. T. 184. C. 919-985. DOI: 10.1016/j.cpc.2012.10.032. arXiv: hep-ph/0405247 [hep-ph].
- 84. Czakon M., Mitov A. Top++: A program for the calculation of the top-pair cross-section at hadron colliders // Comput. Phys. Commun. 2014. T. 185. C. 2930. DOI: 10.1016/j.cpc.2014.06.021. arXiv: 1112.5675 [hep-ph].
- 85. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation / M. Cacciari [и др.] // Phys. Lett. B. 2012. T. 710. C. 612—622. DOI: 10.1016/j.physletb.2012.03.013. arXiv: 1111.5869 [hep-ph].
- 86. Hadronic top-quark pair production with NNLL threshold resummation / M. Beneke [и др.] // Nucl. Phys. B. 2012. Т. 855. С. 695-741. DOI: 10.1016/j.nuclphysb.2011.10.021. arXiv: 1109.1536 [hep-ph].
- 87. Bärnreuther P., Czakon M., Mitov A. Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to qq̄ → tt̄ + X // Phys. Rev. Lett. 2012. T. 109. C. 132001. DOI: 10.1103/ PhysRevLett.109.132001. arXiv: 1204.5201 [hep-ph].
- 88. Czakon M., Mitov A. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels // JHEP. 2012. T. 12. C. 054. DOI: 10.1007/JHEP12(2012)054. arXiv: 1207.0236 [hep-ph].
- 89. Czakon M., Mitov A. NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction // JHEP. 2013. T. 01. C. 080. DOI: 10.1007/JHEP01(2013)080. arXiv: 1210.6832 [hep-ph].
- 90. Czakon M., Fiedler P., Mitov A. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through  $O(\alpha_S^4)$  // Phys. Rev. Lett. - 2013. -

T. 110. - C. 252004. - DOI: 10.1103/PhysRevLett.110.252004. - arXiv: 1303.6254 [hep-ph].

- 91. Kidonakis N. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production // Phys. Rev. D. - 2011. - T. 83. -C. 091503. - DOI: 10.1103/PhysRevD.83.091503. - arXiv: 1103.2792 [hep-ph].
- 92. Kidonakis N. Two-loop soft anomalous dimensions for single top quark associated production with a W<sup>-</sup> or H<sup>-</sup> // Phys. Rev. D. 2010. T. 82. C. 054018. DOI: 10.1103/PhysRevD.82.054018. arXiv: 1005.4451 [hep-ph].
- 93. Kidonakis N. Next-to-next-to-leading logarithm resummation for s-channel single top quark production // Phys. Rev. D. 2010. T. 81. C. 054028. DOI: 10.1103/PhysRevD.81.054028. arXiv: 1001.5034 [hep-ph].
- 94. Sjostrand T., Mrenna S., Skands P. Z. A brief introduction to PYTHIA
  8.1 // Comput. Phys. Commun. 2008. T. 178. C. 852-867. DOI:
  10.1016/j.cpc.2008.01.036. arXiv: 0710.3820 [hep-ph].
- 95. ATLAS Collaboration. Summary of ATLAS Pythia 8 tunes : тех. отч. / CERN. — Geneva, 08.2012. — ATL-PHYS-PUB-2012—003. — URL: https: //cds.cern.ch/record/1474107.
- 96. ATLAS Collaboration. Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data // Eur. Phys. J. C. 2012. T. 72. C. 1909. DOI: 10.1140/epjc/s10052-012-1909-1. arXiv: 1110.3174 [hep-ex].
- 97. ATLAS Collaboration. Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √s = 13 TeV // Eur. Phys. J. C. 2019. T. 79, № 8. C. 639. DOI: 10. 1140/epjc/s10052-019-7140-6. arXiv: 1902.04655 [physics.ins-det].

- 98. ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data // Eur. Phys. J. C. 2014. T. 74, № 10. C. 3071. DOI: 10.1140/epjc/s10052-014-3071-4. arXiv: 1407.5063 [hep-ex].
- 99. ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data // JINST. –
  2019. T. 14, № 03. P03017. DOI: 10.1088/1748-0221/14/03/
  P03017. arXiv: 1812.03848 [hep-ex].
- 100. Concepts, Design and Implementation of the ATLAS New Tracking (NEWT): тех. отч. / Т. Cornelissen [и др.]; CERN. — Geneva, 03.2007. — ATL-SOFT-PUB-2007-007. ATL-COM-SOFT-2007—002. — URL: https://cds.cern. ch/record/1020106.
- 101. ATLAS Collaboration. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data // Eur. Phys. J. C. 2014. T. 74, № 11. C. 3130. DOI: 10. 1140/epjc/s10052-014-3130-x. arXiv: 1407.3935 [hep-ex].
- 102. ATLAS Collaboration. Muon reconstruction performance of the ATLAS detector in proton-proton collision data at √s = 13 TeV // Eur. Phys. J. C. 2016. T. 76, № 5. C. 292. DOI: 10.1140/epjc/s10052-016-4120-y. arXiv: 1603.05598 [hep-ex].
- 103. Cacciari M., Salam G. P., Soyez G. The anti-k<sub>t</sub> jet clustering algorithm // JHEP. - 2008. - T. 04. - C. 063. - DOI: 10.1088/1126-6708/2008/04/ 063. - arXiv: 0802.1189 [hep-ph].
- 104. ATLAS Collaboration. Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s = 13 TeV with the ATLAS detector // Phys. Rev. D. 2017. T. 96, № 7. C. 072002. DOI: 10.1103/PhysRevD.96.072002. arXiv: 1703.09665 [hep-ex].

- 105. ATLAS Collaboration. Performance of pile-up mitigation techniques for jets in pp collisions at √s = 8 TeV using the ATLAS detector // Eur. Phys. J. C. 2016. T. 76, № 11. C. 581. DOI: 10.1140/epjc/s10052-016-4395-z. arXiv: 1510.03823 [hep-ex].
- 106. ATLAS Collaboration. In situ calibration of large-radius jet energy and mass in 13 TeV proton-proton collisions with the ATLAS detector // Eur. Phys. J. C. 2019. T. 79, № 2. C. 135. DOI: 10.1140/epjc/s10052-019-6632-8. arXiv: 1807.09477 [hep-ex].
- 107. Krohn D., Thaler J., Wang L.-T. Jet Trimming // JHEP. 2010. T. 02. C. 084. DOI: 10.1007/JHEP02(2010)084. arXiv: 0912.1342 [hep-ph].
- 108. Better jet clustering algorithms / Y. L. Dokshitzer [и др.] // JHEP. 1997. —
  T. 08. C. 001. DOI: 10.1088/1126-6708/1997/08/001. arXiv: hep-ph/9707323 [hep-ph].
- 109. ATLAS Collaboration. Performance of b-jet identification in the ATLAS experiment // JINST. 2016. T. 11, № 04. P04008. DOI: 10.1088/1748-0221/11/04/P04008. arXiv: 1512.01094 [hep-ex].
- 110. ATLAS Collaboration. Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data : тех. отч. / CERN. Geneva, 07.2014. ATLAS-CONF-2014—046. URL: http://cds.cern.ch/record/1741020.
- ATLAS Collaboration. Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run : тех. отч. / CERN. — Geneva, 06.2016. — ATL-PHYS-PUB-2016—012. — URL: https://cds.cern.ch/record/2160731.
- 112. ATLAS Collaboration. Measurements of b-jet tagging efficiency with the ATLAS detector using  $t\bar{t}$  events at  $\sqrt{s} = 13$  TeV // JHEP. 2018. T. 08. C. 089. DOI: 10.1007/JHEP08(2018)089. arXiv: 1805.01845 [hep-ex].

- 113. Larkoski A. J., Salam G. P., Thaler J. Energy correlation functions for jet substructure // JHEP. 2013. T. 06. C. 108. DOI: 10.1007/JHEP06(2013)108. arXiv: 1305.0007 [hep-ph].
- 114. Larkoski A. J., Moult I., Neill D. Power counting to better jet observables // JHEP. - 2014. - T. 12. - C. 009. - DOI: 10.1007/JHEP12(2014)009. arXiv: 1409.6298 [hep-ph].
- 115. ATLAS Collaboration. Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC // Eur. Phys. J. C. 2019. T. 79, № 5. C. 375. DOI: 10.1140/epjc/s10052-019-6847-8. arXiv: 1808.07858 [hep-ex].
- 116. ATLAS Collaboration. Identification of boosted, hadronically-decaying W and Z bosons in  $\sqrt{s} = 13$  TeV Monte Carlo Simulations for ATLAS : TeX. OTH. / CERN. Geneva, 08.2015. ATL-PHYS-PUB-2015–033. URL: https://cds.cern.ch/record/2041461.
- 117. ATLAS Collaboration. Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at √s = 13 TeV // Eur. Phys. J. C. 2018. T. 78, № 11. C. 903. DOI: 10.1140/epjc/s10052-018-6288-9. arXiv: 1802.08168 [hep-ex].
- 118. ATLAS Collaboration. Performance of missing transverse momentum reconstruction in proton-proton collisions at √s = 7 TeV with ATLAS // Eur. Phys. J. C. 2012. T. 72. C. 1844. DOI: 10.1140/epjc/s10052-011-1844-6. arXiv: 1108.5602 [hep-ex].
- 119. ATLAS Collaboration. Luminosity determination in pp collisions at  $\sqrt{s}$  = 8 TeV using the ATLAS detector at the LHC // Eur. Phys. J. C. 2016. T. 76, Nº 12. C. 653. DOI: 10.1140/epjc/s10052-016-4466-1. arXiv: 1608.03953 [hep-ex].

- 120. The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS / G. Avoni [и др.] // JINST. 2018. Т. 13, № 07. P07017. DOI: 10.1088/1748-0221/13/07/Р07017.
- 121. ATLAS Collaboration. Luminosity determination in pp collisions at  $\sqrt{s} = 13$  TeV using the ATLAS detector at the LHC. -2019.
- 122. ATLAS Collaboration. Improved luminosity determination in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC // Eur. Phys. J. C. 2013. T. 73, № 8. C. 2518. DOI: 10.1140/epjc/s10052-013-2518-3. arXiv: 1302.4393 [hep-ex].
- 123. ATLAS Collaboration. Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector : тех. отч. / CERN. – Geneva, 07.2015. – ATLAS-CONF-2015-029. – URL: https://cds.cern.ch/record/2037702.
- 124. Search for new high-mass resonances in the dilepton final state using proton-proton collisions at √s = 13 TeV with the ATLAS detector : тех. отч. / D. Hayden [и др.]; CERN. Geneva, 05.2016. ATL-COM-PHYS-2016—453. URL: https://cds.cern.ch/record/2151267.
- 125. LPX Matrix Method : тех. отч. URL: https://twiki.cern.ch/twiki/ bin/view/AtlasProtected/LPXMatrixMethod.
- 126. ATLAS Collaboration. Search for scalar leptoquarks in pp collisions at √s =
  13 TeV with the ATLAS experiment // New J. Phys. 2016. T. 18, №
  9. C. 093016. DOI: 10.1088/1367-2630/18/9/093016. arXiv: 1605.06035 [hep-ex].
- 127. LPXMatrixMethod : тех. отч. URL: svn+ssh://svn.cern.ch/reps/ atlasphys-exo/Physics/Exotic/LPX/CommonTools/LPXMatrixMethod/ tags/LPXMatrixMethod-00-00-03.

- 128. Asymptotic formulae for likelihood-based tests of new physics / G. Cowan and K. Cranmer and E. Gross and O. Vitell // Eur. Phys. J. C. 2011. T. 71. C. 1554. DOI: 10.1140/epjc/s10052-011-1554-0. arXiv: 1007.1727
  [physics.data-an]. Erratum: G. Cowan [и др.] // Eur. Phys. J. C. 2013. T. 73. C. 2501. DOI: 10.1140/epjc/s10052-013-2501-z.
- 129. The PDF4LHC Working Group Interim Recommendations / M. Botje [и др.]. 2011. arXiv: 1101.0538 [hep-ph].
- 130. Parton distributions in the LHC era: MMHT 2014 PDFs / L. A. Harland-Lang [и др.] // Eur. Phys. J. C. 2015. Т. 75, № 5. С. 204. DOI: 10.1140/ epjc/s10052-015-3397-6. arXiv: 1412.3989 [hep-ph].
- 131. New parton distribution functions from a global analysis of quantum chromodynamics / S. Dulat [и др.] // Phys. Rev. D. — 2016. — Т. 93, № 3. — C. 033006. — DOI: 10.1103/PhysRevD.93.033006. — arXiv: 1506.07443 [hep-ph].
- 132. Cranmer K. Practical Statistics for the LHC // Proceedings, 2011 European School of High-Energy Physics (ESHEP 2011): Cheile Gradistei, Romania, September 7–20, 2011. 2015. C. 267–308. DOI: 10.5170/CERN 2015 001.247, 10.5170/CERN 2014 003.267. arXiv: 1503.07622 [physics.data-an]. [,247(2015)].
- 133. Read A. L. Presentation of search results: The CL<sub>s</sub> technique // J. Phys.
  G. 2002. Vol. 28. P. 2693–2704. DOI: 10.1088/0954–3899/28/10/313.

#### Приложение А

## Моделирование сигнальных наборов данных в поиске возбужденных электронов

Парциальные ширины распадов  $e^*$  вычислены для каждого значения  $m_{e^*}$  с помощью CALCHEP 3.6.25 [59], в котором применяется процедура символьного интегрирования для процессов  $1 \rightarrow 2$  и численного интегрирования с алгоритмом Vegas для процессов  $1 \rightarrow 3$  без учета эффектов фазового пространства. В Таблице A.1 приведены парциальные ширины для всех смоделированных сигнальных наборов данных.

Таблица А.2 описывает смоделированные наборы данных для процесса  $ll^* \to l\nu W.$ 

Таблица А.1. Парциальные ширины распадов возбужденного электрона для разных масс возбужденного электрона. Все числа представлены в ГэВ.

|                                  | 100                   | 200                   | 300                   | 400                   | 500                   | 600                   |
|----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\Gamma^{\gamma e}$              | $7.95 \times 10^{-5}$ | $6.36\times10^{-4}$   | $2.15\times10^{-3}$   | $5.09 \times 10^{-3}$ | $9.94 \times 10^{-3}$ | $1.72\times 10^{-2}$  |
| $\Gamma^{Ze}$                    | $1.30 \times 10^{-6}$ | $1.79 \times 10^{-4}$ | $7.52\times10^{-4}$   | $1.91 \times 10^{-3}$ | $3.84 \times 10^{-3}$ | $6.74\times10^{-3}$   |
| $\Gamma^{W\nu_e}$                | $2.84\times10^{-5}$   | $1.04 \times 10^{-3}$ | $4.14\times10^{-3}$   | $1.03\times 10^{-2}$  | $2.06\times 10^{-2}$  | $3.61\times 10^{-2}$  |
| $\Gamma^{ed\bar{d}}$             | $1.59 \times 10^{-7}$ | $5.09 \times 10^{-6}$ | $3.87 \times 10^{-5}$ | $1.63\times 10^{-4}$  | $4.97\times 10^{-4}$  | $1.24 \times 10^{-3}$ |
| $\Gamma^{eu\bar{u}}$             | $1.59 \times 10^{-7}$ | $5.09 \times 10^{-6}$ | $3.87 \times 10^{-5}$ | $1.63\times 10^{-4}$  | $4.97\times 10^{-4}$  | $1.24 \times 10^{-3}$ |
| $\Gamma^{es\bar{s}}$             | $1.59 \times 10^{-7}$ | $5.09 \times 10^{-6}$ | $3.87 \times 10^{-5}$ | $1.63 \times 10^{-4}$ | $4.97\times 10^{-4}$  | $1.24\times10^{-3}$   |
| $\Gamma^{ec\bar{c}}$             | $1.59 \times 10^{-7}$ | $5.09 \times 10^{-6}$ | $3.87 \times 10^{-5}$ | $1.63\times 10^{-4}$  | $4.97\times 10^{-4}$  | $1.24 \times 10^{-3}$ |
| $\Gamma^{eb\bar{b}}$             | $1.55 	imes 10^{-7}$  | $5.06 \times 10^{-6}$ | $3.85\times10^{-5}$   | $1.63 	imes 10^{-4}$  | $4.97\times 10^{-4}$  | $1.24 \times 10^{-3}$ |
| $\Gamma^{et\bar{t}}$             | 0                     | 0                     | 0                     | $1.27 \times 10^{-6}$ | $4.79\times10^{-5}$   | $2.84\times10^{-4}$   |
| $\Gamma^{eee}$                   | $1.06 	imes 10^{-7}$  | $3.40 \times 10^{-6}$ | $2.58\times10^{-5}$   | $1.09\times 10^{-4}$  | $3.32\times 10^{-4}$  | $8.25\times 10^{-4}$  |
| $\Gamma^{e\nu_e\nu_e}$           | $5.31 	imes 10^{-8}$  | $1.70 \times 10^{-6}$ | $1.29\times 10^{-5}$  | $5.43 \times 10^{-5}$ | $1.66\times 10^{-4}$  | $4.13\times 10^{-4}$  |
| $\Gamma^{e\mu\mu}$               | $5.31 	imes 10^{-8}$  | $1.70 \times 10^{-6}$ | $1.29\times 10^{-5}$  | $5.43 \times 10^{-5}$ | $1.66\times 10^{-4}$  | $4.13\times 10^{-4}$  |
| $\Gamma^{e\nu_{\mu}\nu_{\mu}}$   | $5.31 	imes 10^{-8}$  | $1.70 \times 10^{-6}$ | $1.29\times 10^{-5}$  | $5.43 \times 10^{-5}$ | $1.66\times 10^{-4}$  | $4.13\times 10^{-4}$  |
| $\Gamma^{e\tau\tau}$             | $5.28 	imes 10^{-8}$  | $1.70 \times 10^{-6}$ | $1.29\times 10^{-5}$  | $5.43 \times 10^{-5}$ | $1.66\times 10^{-4}$  | $4.12\times 10^{-4}$  |
| $\Gamma^{e\nu_{\tau}\nu_{\tau}}$ | $5.31 \times 10^{-8}$ | $1.70 \times 10^{-6}$ | $1.29 \times 10^{-5}$ | $5.43 \times 10^{-5}$ | $1.66 \times 10^{-4}$ | $4.13 \times 10^{-4}$ |
| $\Gamma^{total}$                 | $1.10 \times 10^{-4}$ | $1.89 \times 10^{-3}$ | $7.33 \times 10^{-3}$ | $1.85 \times 10^{-2}$ | $3.81 \times 10^{-2}$ | $6.94 \times 10^{-2}$ |

|                                  | 700                   | 800                   | 900                   | 1000                  | 1250                  | 1500                  |
|----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\Gamma^{\gamma e}$              | $2.73\times10^{-2}$   | $4.07\times 10^{-2}$  | $5.79\times10^{-2}$   | $7.95\times10^{-2}$   | $1.55 \times 10^{-1}$ | $2.68\times 10^{-1}$  |
| $\Gamma^{Ze}$                    | $1.08\times10^{-2}$   | $1.62\times 10^{-2}$  | $2.32\times10^{-2}$   | $3.19\times10^{-2}$   | $6.26\times10^{-2}$   | $1.08 \times 10^{-1}$ |
| $\Gamma^{W\nu_e}$                | $5.78\times10^{-2}$   | $8.67\times 10^{-2}$  | $1.24 \times 10^{-1}$ | $1.70 \times 10^{-1}$ | $3.34 \times 10^{-1}$ | $5.78 \times 10^{-1}$ |
| $\Gamma^{ed\bar{d}}$             | $2.67\times 10^{-3}$  | $5.21 \times 10^{-3}$ | $9.40 \times 10^{-3}$ | $1.59\times 10^{-2}$  | $4.86\times10^{-2}$   | $1.21 \times 10^{-1}$ |
| $\Gamma^{eu\bar{u}}$             | $2.67\times 10^{-3}$  | $5.21 	imes 10^{-3}$  | $9.40\times10^{-3}$   | $1.59\times 10^{-2}$  | $4.86\times10^{-2}$   | $1.21 \times 10^{-1}$ |
| $\Gamma^{es\bar{s}}$             | $2.67\times 10^{-3}$  | $5.21 \times 10^{-3}$ | $9.40 \times 10^{-3}$ | $1.59\times 10^{-2}$  | $4.86\times10^{-2}$   | $1.21 \times 10^{-1}$ |
| $\Gamma^{ec\bar{c}}$             | $2.67\times 10^{-3}$  | $5.21 \times 10^{-3}$ | $9.40 \times 10^{-3}$ | $1.59\times 10^{-2}$  | $4.86\times10^{-2}$   | $1.21 \times 10^{-1}$ |
| $\Gamma^{eb\bar{b}}$             | $2.67\times 10^{-3}$  | $5.21 \times 10^{-3}$ | $9.39 	imes 10^{-3}$  | $1.59\times 10^{-2}$  | $4.86\times10^{-2}$   | $1.21 \times 10^{-1}$ |
| $\Gamma^{et\bar{t}}$             | $9.54\times10^{-4}$   | $2.42\times 10^{-3}$  | $5.17 	imes 10^{-3}$  | $9.85\times10^{-3}$   | $3.59\times10^{-2}$   | $9.80\times10^{-2}$   |
| $\Gamma^{eee}$                   | $1.78 \times 10^{-3}$ | $3.48 \times 10^{-3}$ | $6.27 \times 10^{-3}$ | $1.06\times 10^{-2}$  | $3.24\times 10^{-2}$  | $8.06\times 10^{-2}$  |
| $\Gamma^{e\nu_e\nu_e}$           | $8.92\times10^{-4}$   | $1.74 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | $5.31 	imes 10^{-3}$  | $1.62\times 10^{-2}$  | $4.03\times 10^{-2}$  |
| $\Gamma^{e\mu\mu}$               | $8.92\times 10^{-4}$  | $1.74 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | $5.31 \times 10^{-3}$ | $1.62\times 10^{-2}$  | $4.03\times10^{-2}$   |
| $\Gamma^{e\nu_{\mu}\nu_{\mu}}$   | $8.92\times10^{-4}$   | $1.74 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | $5.31 \times 10^{-3}$ | $1.62\times 10^{-2}$  | $4.03\times 10^{-2}$  |
| $\Gamma^{e\tau\tau}$             | $8.92\times10^{-4}$   | $1.74 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | $5.30 	imes 10^{-3}$  | $1.62\times 10^{-2}$  | $4.03\times 10^{-2}$  |
| $\Gamma^{e\nu_{\tau}\nu_{\tau}}$ | $8.92\times10^{-4}$   | $1.74 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | $5.31 \times 10^{-3}$ | $1.62\times 10^{-2}$  | $4.03\times10^{-2}$   |
| $\Gamma^{total}$                 | $1.16 	imes 10^{-1}$  | $1.84 \times 10^{-1}$ | $2.79\times10^{-1}$   | $4.08 \times 10^{-1}$ | $9.44 \times 10^{-1}$ | 1.94                  |

|                                  | 1750                  | 2000                  | 2250                  | 2500                 | 2750                | 3000                |
|----------------------------------|-----------------------|-----------------------|-----------------------|----------------------|---------------------|---------------------|
| $\Gamma^{\gamma e}$              | $4.26\times10^{-1}$   | $6.36 \times 10^{-1}$ | $9.05 \times 10^{-1}$ | 1.24                 | 1.65                | 2.15                |
| $\Gamma^{Ze}$                    | $1.72 \times 10^{-1}$ | $2.58\times10^{-1}$   | $3.67 \times 10^{-1}$ | $5.04\times10^{-1}$  | $6.71\times10^{-1}$ | $8.71\times10^{-1}$ |
| $\Gamma^{W\nu_e}$                | $9.18 \times 10^{-1}$ | 1.37                  | 1.95                  | 2.68                 | 3.58                | 4.64                |
| $\Gamma^{ed\bar{d}}$             | $2.61\times 10^{-1}$  | $5.09 	imes 10^{-1}$  | $9.18\times10^{-1}$   | 1.55                 | 2.50                | 3.87                |
| $\Gamma^{eu\bar{u}}$             | $2.61\times 10^{-1}$  | $5.09 	imes 10^{-1}$  | $9.18\times10^{-1}$   | 1.55                 | 2.50                | 3.87                |
| $\Gamma^{es\bar{s}}$             | $2.61\times 10^{-1}$  | $5.09 	imes 10^{-1}$  | $9.18\times10^{-1}$   | 1.55                 | 2.50                | 3.87                |
| $\Gamma^{ec\bar{c}}$             | $2.61\times 10^{-1}$  | $5.09 	imes 10^{-1}$  | $9.18\times10^{-1}$   | 1.55                 | 2.50                | 3.87                |
| $\Gamma^{eb\bar{b}}$             | $2.61\times 10^{-1}$  | $5.09 	imes 10^{-1}$  | $9.18\times10^{-1}$   | 1.55                 | 2.50                | 3.87                |
| $\Gamma^{et\bar{t}}$             | $2.24\times 10^{-1}$  | $4.53\times 10^{-1}$  | $8.36\times10^{-1}$   | 1.44                 | 2.35                | 3.67                |
| $\Gamma^{eee}$                   | $1.74\times 10^{-1}$  | $3.40\times10^{-1}$   | $6.12\times10^{-1}$   | 1.04                 | 1.67                | 2.58                |
| $\Gamma^{e\nu_e\nu_e}$           | $8.71\times10^{-2}$   | $1.70 	imes 10^{-1}$  | $3.06\times 10^{-1}$  | $5.18 	imes 10^{-1}$ | $8.34\times10^{-1}$ | 1.29                |
| $\Gamma^{e\mu\mu}$               | $8.71\times10^{-2}$   | $1.70 	imes 10^{-1}$  | $3.06\times 10^{-1}$  | $5.18 	imes 10^{-1}$ | $8.34\times10^{-1}$ | 1.29                |
| $\Gamma^{e\nu_{\mu}\nu_{\mu}}$   | $8.71\times10^{-2}$   | $1.70 	imes 10^{-1}$  | $3.06\times 10^{-1}$  | $5.18 	imes 10^{-1}$ | $8.34\times10^{-1}$ | 1.29                |
| $\Gamma^{e\tau\tau}$             | $8.71\times10^{-2}$   | $1.70 	imes 10^{-1}$  | $3.06\times 10^{-1}$  | $5.18 	imes 10^{-1}$ | $8.34\times10^{-1}$ | 1.29                |
| $\Gamma^{e\nu_{\tau}\nu_{\tau}}$ | $8.71\times10^{-2}$   | $1.70\times10^{-1}$   | $3.06\times10^{-1}$   | $5.18\times10^{-1}$  | $8.34\times10^{-1}$ | 1.29                |
| $\Gamma^{total}$                 | 3.65                  | 6.45                  | $1.08 \times 10^{1}$  | $1.72 \times 10^{1}$ | $2.67 \times 10^1$  | $3.97 \times 10^1$  |

|                                  | 3250               | 3500               | 3750               | 4000               | 500                 | 1000                |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|
| $\Gamma^{\gamma e}$              | 2.73               | 3.41               | 4.19               | 5.09               | $9.94\times10^{-1}$ | 1.99                |
| $\Gamma^{Ze}$                    | 1.11               | 1.38               | 1.70               | 2.07               | $3.84\times10^{-1}$ | $7.98\times10^{-1}$ |
| $\Gamma^{W\nu_e}$                | 5.90               | 7.36               | 9.06               | $1.10 \times 10^1$ | 2.06                | 4.26                |
| $\Gamma^{ed\bar{d}}$             | 5.77               | 8.36               | $1.18 \times 10^1$ | $1.63 	imes 10^1$  | 4.97                | 9.95                |
| $\Gamma^{eu\bar{u}}$             | 5.77               | 8.36               | $1.18 \times 10^1$ | $1.63 	imes 10^1$  | 4.97                | 9.95                |
| $\Gamma^{es\bar{s}}$             | 5.77               | 8.36               | $1.18 \times 10^1$ | $1.63 	imes 10^1$  | 4.97                | 9.95                |
| $\Gamma^{ec\bar{c}}$             | 5.77               | 8.36               | $1.18 \times 10^1$ | $1.63 	imes 10^1$  | 4.97                | 9.95                |
| $\Gamma^{eb\bar{b}}$             | 5.77               | 8.36               | $1.18 \times 10^1$ | $1.63 	imes 10^1$  | 4.97                | 9.94                |
| $\Gamma^{et\bar{t}}$             | 5.52               | 8.04               | $1.14 \times 10^1$ | $1.58 	imes 10^1$  | 4.79                | 6.16                |
| $\Gamma^{eee}$                   | 3.85               | 5.57               | 7.87               | $1.09 \times 10^1$ | 3.32                | 6.63                |
| $\Gamma^{e\nu_e\nu_e}$           | 1.92               | 2.79               | 3.93               | 5.43               | 1.66                | 3.32                |
| $\Gamma^{e\mu\mu}$               | 1.92               | 2.79               | 3.93               | 5.43               | 1.66                | 3.32                |
| $\Gamma^{e\nu_{\mu}\nu_{\mu}}$   | 1.92               | 2.79               | 3.93               | 5.43               | 1.66                | 3.32                |
| $\Gamma^{e\tau\tau}$             | 1.92               | 2.79               | 3.93               | 5.43               | 1.66                | 3.32                |
| $\Gamma^{e\nu_{\tau}\nu_{\tau}}$ | 1.92               | 2.79               | 3.93               | 5.43               | 1.66                | 3.32                |
| $\Gamma^{total}$                 | $5.76 \times 10^1$ | $8.15 \times 10^1$ | $1.13 \times 10^2$ | $1.54 \times 10^2$ | $4.47 \times 10^1$  | $8.62 \times 10^1$  |

| k     | •            |
|-------|--------------|
| Ľ     | 2            |
| -     | 5            |
|       | ↑            |
|       |              |
| 7 I 4 | 11           |
|       | ಹ            |
|       | 20           |
|       | ē,           |
|       | õ            |
|       | đ            |
|       | E            |
|       | Ë            |
|       | ٦.           |
|       | Ř.           |
|       | 臣            |
|       | Щ            |
|       | Ħ            |
|       | Е            |
|       | ā            |
| ١     | 8            |
|       | Б            |
|       |              |
|       | Ĕ            |
|       | Ē            |
|       | E            |
|       | ď            |
|       | Ë            |
|       | СИ           |
|       | ē            |
|       | PI           |
|       | E            |
|       | gI           |
|       | OE           |
|       | Ā            |
|       | 1L           |
|       | ď,           |
|       | õ            |
| 7     | Ę            |
| 5     | _            |
| ¢     | Ņ            |
| <     | $\mathbf{A}$ |
|       | പ്           |
|       | É            |
|       | Ę            |
| ſ     | g            |
| E     | H            |

| $[I \in \Pi] * m_{l^*}$ | $\Lambda \left[\Gamma \Im B\right]$ | $\sigma_{e^*}^{LO}$ [II6] | $\sigma_{\mu^*}^{LO}$ [II6] | $N^{e^*}_{MC}$ | $N_{MC}^{\mu^*}$ | Dataset ID $(e^*)$ | Dataset ID $(\mu^*)$ | Simulation type |
|-------------------------|-------------------------------------|---------------------------|-----------------------------|----------------|------------------|--------------------|----------------------|-----------------|
| 100                     | 5000                                | $3.34 \times 10^{-1}$     | $3.31 \times 10^{-1}$       | 28000          | 30000            | 305725             | 305749               | FULLSIM         |
| 200                     | 5000                                | $5.76\times10^{-1}$       | $5.80 	imes 10^{-1}$        | 30000          | 30000            | 305726             | 305750               | FULLSIM         |
| 300                     | 5000                                | $4.91\times10^{-1}$       | $4.88 \times 10^{-1}$       | 29000          | 28000            | 305727             | 305751               | FULLSIM         |
| 400                     | 5000                                | $3.98 \times 10^{-1}$     | $3.99 \times 10^{-1}$       | 30000          | 30000            | 305728             | 305752               | FULLSIM         |
| 500                     | 5000                                | $3.23 	imes 10^{-1}$      | $3.23 \times 10^{-1}$       | 19000          | 30000            | 305729             | 305753               | FULLSIM         |
| 600                     | 5000                                | $2.59\times 10^{-1}$      | $2.59\times10^{-1}$         | 29000          | 29000            | 305731             | 305755               | FULLSIM         |
| 200                     | 5000                                | $2.09 	imes 10^{-1}$      | $2.07 	imes 10^{-1}$        | 30000          | 30000            | 305732             | 305756               | FULLSIM         |
| 800                     | 5000                                | $1.65 	imes 10^{-1}$      | $1.65 	imes 10^{-1}$        | 28000          | 30000            | 305733             | 305757               | FULLSIM         |
| 006                     | 5000                                | $1.32 \times 10^{-1}$     | $1.31 \times 10^{-1}$       | 30000          | 29000            | 305734             | 305758               | FULLSIM         |
| 1000                    | 5000                                | $1.05 	imes 10^{-1}$      | $1.04 \times 10^{-1}$       | 29000          | 30000            | 305735             | 305759               | FULLSIM         |
| 1250                    | 5000                                | $5.83\times10^{-2}$       | $5.84\times10^{-2}$         | 30000          | 30000            | 305737             | 305761               | FULLSIM         |
| 1500                    | 5000                                | $3.26\times10^{-2}$       | $3.29 \times 10^{-2}$       | 29000          | 29000            | 305738             | 305762               | FULLSIM         |
| 1750                    | 5000                                | $1.83\times10^{-2}$       | $1.84 \times 10^{-2}$       | 30000          | 30000            | 305739             | 305763               | FULLSIM         |
| 2000                    | 5000                                | $1.04 \times 10^{-2}$     | $1.04 \times 10^{-2}$       | 30000          | 26000            | 305740             | 305764               | FULLSIM         |
| 2250                    | 5000                                | $5.90 	imes 10^{-3}$      | $5.90 	imes 10^{-3}$        | 29000          | 30000            | 305741             | 305765               | FULLSIM         |
| 2500                    | 5000                                | $3.37\times10^{-3}$       | $3.38 \times 10^{-3}$       | 30000          | 30000            | 305742             | 305766               | FULLSIM         |
| 2750                    | 5000                                | $1.97 	imes 10^{-3}$      | $1.96\times10^{-3}$         | 30000          | 30000            | 305743             | 305767               | FULLSIM         |
| 3000                    | 5000                                | $1.13 	imes 10^{-3}$      | $1.13 	imes 10^{-3}$        | 16000          | 30000            | 305744             | 305768               | FULLSIM         |
| 3250                    | 5000                                | $6.64\times10^{-4}$       | $6.58 	imes 10^{-4}$        | 30000          | 30000            | 305745             | 305769               | FULLSIM         |
| 3500                    | 5000                                | $3.86\times10^{-4}$       | $3.86\times10^{-4}$         | 30000          | 29000            | 305746             | 305770               | FULLSIM         |
| 3750                    | 5000                                | $2.29\times 10^{-4}$      | $2.29\times10^{-4}$         | 29000          | 30000            | 305747             | 305771               | FULLSIM         |
| 4000                    | 5000                                | $1.38\times10^{-4}$       | $1.38 \times 10^{-4}$       | 30000          | 30000            | 305748             | 305772               | FULLSIM         |

#### Приложение Б

### Проверка моделирования сигнальных наборов данных

Наборы проверочных распределений для  $\Lambda = 5000$  ГэВ и  $m_{l^*} = 250$  ГэВ,  $m_{l^*} = 1000$  ГэВ,  $m_{l^*} = 4000$  ГэВ для канала  $ee^* \rightarrow e\nu W$  показаны в Приложении Б.1, а для канала  $\mu\mu^* \rightarrow \mu\nu W$  – в Приложении Б.2. Проверка проведена на генераторном уровне со статистикой каждого набора, равной  $10^4$  событий.

**B.1.**  $ee^* \to e\nu W$ ,  $m_{e^*} = 250, 1000, 4000 \ \Gamma \mathfrak{sB}$ ,  $\Lambda = 5000 \ \Gamma \mathfrak{sB}$ .



Puc. B.9.  $q \ (W \to q\bar{q})$  Puc. B.10.  $q \ (W \to q\bar{q})$  Puc. B.11.  $q \ (W \to q\bar{q})$  Puc. B.12.  $q \ (W \to q\bar{q})$  $p_{\rm T} \qquad \eta \qquad \phi \qquad E$   $\int_{a}^{b} \frac{1}{2} \int_{a}^{b} \frac{1}{2$ 

Рис. Б.13. <br/>  $\bar{q}~(W\to q\bar{q})$ Рис. Б.14.  $\bar{q}~(W\to q\bar{q})$ Рис. Б.15. <br/>  $\bar{q}~(W\to q\bar{q})$ Рис. Б.16.  $\bar{q}~(W\to q\bar{q})$ 



Рис. Б.17. <br/>  $l~(W\to l\nu)$ Рис. Б.18.  $l~(W\to l\nu)$ Рис. Б.19. <br/>  $l~(W\to l\nu)$ Рис. Б.20.  $l~(W\to l\nu)$ 



Рис. Б.21.  $\nu$  ( $W \to l\nu$ ) Рис. Б.22.  $\nu$  ( $W \to l\nu$ ) Рис. Б.23.  $\nu$  ( $W \to l\nu$ ) Рис. Б.24.  $\nu$  ( $W \to l\nu$ )  $p_{\rm T}$   $p_x$   $p_y$  E



Рис. Б.33.  $S_{\rm T}~(W \rightarrow$  Рис. Б.34.  $S_{\rm T}~(W \rightarrow$  Рис. Б.35. Тип собы $q\bar{q})$   $l\nu)$  тия

**B.2.**  $\mu\mu^* \to \mu\nu W$ ,  $m_{\mu^*} = 250, 1000, 4000 \ \Gamma \mathbf{\overline{9B}}$ ,  $\Lambda = 5000 \ \Gamma \mathbf{\overline{9B}}$ .





Рис. Б.44. <br/>  $q~(W\to q\bar{q})$ Рис. Б.45.  $q~(W\to q\bar{q})$ Рис. Б.46. <br/>  $q~(W\to q\bar{q})$ Рис. Б.47.  $q~(W\to q\bar{q})$ Рис. Б.47.



Рис. Б.48.  $\bar{q} \ (W \to q\bar{q})$  Рис. Б.49.  $\bar{q} \ (W \to q\bar{q})$  Рис. Б.50.  $\bar{q} \ (W \to q\bar{q})$  Рис. Б.51.  $\bar{q} \ (W \to q\bar{q})$ 



Рис. Б.52. <br/>  $l~(W\to l\nu)$ Рис. Б.53.  $l~(W\to l\nu)$ Рис. Б.54. <br/>  $l~(W\to l\nu)$ Рис. Б.55.  $l~(W\to l\nu)$ Рис. Б.55.



Рис. Б.56.  $\nu \ (W \to l\nu)$  Рис. Б.57.  $\nu \ (W \to l\nu)$  Рис. Б.58.  $\nu \ (W \to l\nu)$  Рис. Б.59.  $\nu \ (W \to l\nu)$  $p_{\rm T}$   $p_x$   $p_y$  E



Рис. Б.68.  $S_{\rm T}~(W \rightarrow$  Рис. Б.69.  $S_{\rm T}~(W \rightarrow$  Рис. Б.70. Тип собы $q\bar{q})$   $l\nu)$  тия



Рис. Б.79. <br/>  $q~(W\to q\bar{q})$ Рис. Б.80.  $q~(W\to q\bar{q})$ Рис. Б.81. <br/>  $q~(W\to q\bar{q})$ Рис. Б.82.  $q~(W\to q\bar{q})$ Рис. Б.82.



Puc. B.83.  $\bar{q} (W \to q\bar{q})$  Puc. B.84.  $\bar{q} (W \to q\bar{q})$  Puc. B.85.  $\bar{q} (W \to q\bar{q})$  Puc. B.86.  $\bar{q} (W \to q\bar{q})$  $p_{\mathrm{T}}$   $\eta$   $\phi$  E  $p_{\mathrm{T}}$   $\eta$   $\phi$  E

Рис. Б.87.  $l (W \to l\nu)$  Рис. Б.88.  $l (W \to l\nu)$  Рис. Б.89.  $l (W \to l\nu)$  Рис. Б.90.  $l (W \to l\nu)$ 



Рис. Б.91.  $\nu \ (W \to l\nu)$  Рис. Б.92.  $\nu \ (W \to l\nu)$  Рис. Б.93.  $\nu \ (W \to l\nu)$  Рис. Б.94.  $\nu \ (W \to l\nu)$  $p_{\rm T}$   $p_x$   $p_y$  E



Рис. Б.103.  $S_{\rm T}~(W \rightarrow$  Рис. Б.104.  $S_{\rm T}~(W \rightarrow$  Рис. Б.105. Тип собы $q\bar{q})$   $l\nu)$  тия



Puc. B.114.  $q (W \rightarrow$  Puc. B.115.  $q (W \rightarrow$  Puc. B.116.  $q (W \rightarrow$  Puc. B.117.  $q (W \rightarrow$  $q\bar{q}) p_{\mathrm{T}}$   $q\bar{q}) \eta$   $q\bar{q}) \phi$   $q\bar{q}) E$   $\int_{a}^{a} \int_{a}^{a} \int_{a}^{a$ 

Puc. B.118.  $\bar{q} (W \to \text{Puc. B.119. } \bar{q} (W \to \text{Puc. B.120. } \bar{q} (W \to \text{Puc. B.121. } \bar{q} (W \to \text{Puc. B.121. } \bar{q} (W \to q\bar{q}) p_{\mathrm{T}}$  $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q$   $q\bar{q} q$   $p_{\mathrm{T}}$   $q\bar{q} q$   $q\bar{q} q$  q

Рис. Б.122.  $l (W \to l\nu)$  Рис. Б.123.  $l (W \to l\nu)$  Рис. Б.124.  $l (W \to l\nu)$  Рис. Б.125.  $l (W \to l\nu)$ 



Рис. Б.126.  $\nu$  ( $W \rightarrow$  Рис. Б.127.  $\nu$  ( $W \rightarrow$  Рис. Б.128.  $\nu$  ( $W \rightarrow$  Рис. Б.129.  $\nu$  ( $W \rightarrow$  $l\nu$ )  $p_{\rm T}$   $l\nu$ )  $p_x$   $l\nu$ )  $p_y$   $l\nu$ ) E



Рис. Б.138.  $S_{\rm T}~(W \rightarrow$  Рис. Б.139.  $S_{\rm T}~(W \rightarrow$  Рис. Б.140. Тип собы $q\bar{q})$   $l\nu)$  тия



Puc. B.149. q (W  $\rightarrow$  Puc. B.150. q (W  $\rightarrow$  Puc. B.151. q (W  $\rightarrow$  Puc. B.152. q (W

Puc. B.153.  $\bar{q} (W \to \text{Puc. B.154. } \bar{q} (W \to \text{Puc. B.155. } \bar{q} (W \to \text{Puc. B.156. } \bar{q} (W \to \text{Puc. B.156. } \bar{q} (W \to \text{Puc. B.156. } \bar{q} (W \to q\bar{q}) p_{\mathrm{T}}$  $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q p$   $p_{\mathrm{T}}$   $q\bar{q} q$   $q\bar{q} q$   $p_{\mathrm{T}}$   $q\bar{q} q$   $q\bar{q} q$ 

Рис. Б.157. <br/>  $l~(W\to l\nu)$ Рис. Б.158.  $l~(W\to l\nu)$ Рис. Б.159. <br/>  $l~(W\to l\nu)$ Рис. Б.160.  $l~(W\to l\nu)$ 



Рис. Б.161.  $\nu$  ( $W \rightarrow$  Рис. Б.162.  $\nu$  ( $W \rightarrow$  Рис. Б.163.  $\nu$  ( $W \rightarrow$  Рис. Б.164.  $\nu$  ( $W \rightarrow$   $l\nu$ )  $p_{\rm T}$   $l\nu$ )  $p_x$   $l\nu$ )  $p_y$   $l\nu$ ) E



Рис. Б.173.  $S_{\rm T}~(W \rightarrow$  Рис. Б.174.  $S_{\rm T}~(W \rightarrow$  Рис. Б.175. Тип собы $q\bar{q})$   $l\nu)$  тия



Puc. B.184.  $q \ (W \rightarrow$  Puc. B.185.  $q \ (W \rightarrow$  Puc. B.186.  $q \ (W \rightarrow$  Puc. B.187.  $q \ (W \rightarrow$  $q\bar{q}) p_{\mathrm{T}} \qquad q\bar{q}) \eta \qquad q\bar{q} \ \phi \qquad q\bar{q}) E$ 

Puc. B.188.  $\bar{q} (W \to \text{Puc. B.189. } \bar{q} (W \to \text{Puc. B.189. } \bar{q} (W \to \text{Puc. B.190. } \bar{q} (W \to \text{Puc. B.191. } \bar{q} (W \to q\bar{q}) p_{\mathrm{T}}$  $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} q p$   $q\bar{q} \phi$   $q\bar{q} e^{-q} \phi$   $q\bar{q} p_{\mathrm{T}}$   $q\bar{q} q \phi$   $q\bar{q} e^{-q} \phi$   $q^{-q} \phi$ 

Рис. Б.192. <br/>  $l~(W\to l\nu)$ Рис. Б.193.  $l~(W\to l\nu)$ Рис. Б.194. <br/>  $l~(W\to l\nu)$ Рис. Б.195.  $l~(W\to l\nu)$ Рис. Б.195.



Рис. Б.196.  $\nu$  ( $W \rightarrow$  Рис. Б.197.  $\nu$  ( $W \rightarrow$  Рис. Б.198.  $\nu$  ( $W \rightarrow$  Рис. Б.199.  $\nu$  ( $W \rightarrow$   $l\nu$ )  $p_{\rm T}$   $l\nu$ )  $p_x$   $l\nu$ )  $p_y$   $l\nu$ ) E



Рис. Б.208.  $S_{\rm T}~(W \rightarrow$  Рис. Б.209.  $S_{\rm T}~(W \rightarrow$  Рис. Б.210. Тип собы $q\bar{q})$   $l\nu)$  тия

#### Приложение В

# Наборы данных для фоновых процессов в поиске возбужденных электронов

Процессы W + jets и  $Z/\gamma^*$  + jets (Таблицы В.1-В.4) были смоделированы с наложением фильтров на партонном уровне, которые отбирали либо только события с партонами  $u(\bar{u}), d(\bar{d}), s(\bar{s}), g$  (*light* фильтр), либо с как минимум одним  $c(\bar{c})$  партоном и ни одного  $b(\bar{b})$  партона (c фильтр), либо с как минимум одним  $b(\bar{b})$  партоном (b фильтр). В наборах данных для процесса  $t\bar{t}$  (Таблица В.5), на уровне генератора к событиям применялись фильтры, требующие, чтобы как минимум один t-кварк или оба распадались в лептонном канале (*nonallhad*).

Таблица В.1. Смоделированные наборы данных для фоновых процессов рождения  $W (\rightarrow e\nu) + \text{jets}$  (FULLSIM).

| Процесс                                 | $\max\{H_T, p_T^{e\nu}\} \ [\Gamma \ni \mathbf{B}]$ | $\sigma$ [II6] | $k_{\mathrm{F}}$ | $\epsilon_{ m gen}$ | $N_{MC}$ | DSID   |
|-----------------------------------------|-----------------------------------------------------|----------------|------------------|---------------------|----------|--------|
| W( ightarrow e u) + light               | 02-0                                                | 19.127         | 0.9702           | 0.82447             | 24740000 | 364170 |
| $W(\to e \nu) + c$                      |                                                     | 19.13          | 0.9702           | 0.1303              | 9853500  | 364171 |
| W( ightarrow e u) + b                   |                                                     | 19.135         | 0.9702           | 0.044141            | 17242400 | 364172 |
| $W( ightarrow e u) + light_{\parallel}$ | 70-140                                              | 0.94258        | 0.9702           | 0.66872             | 14660500 | 364173 |
| $W(\to e\nu) + c$                       |                                                     | 0.94567        | 0.9702           | 0.22787             | 9818400  | 364174 |
| W( ightarrow e u) + b                   |                                                     | 0.94515        | 0.9702           | 0.10341             | 9801900  | 364175 |
| W( ightarrow e u) + light               | 140-280                                             | 0.33981        | 0.9702           | 0.59691             | 9879000  | 364176 |
| $W(\to e\nu) + c$                       |                                                     | 0.33987        | 0.9702           | 0.28965             | 7410000  | 364177 |
| W( ightarrow e u) + b                   |                                                     | 0.33948        | 0.9702           | 0.10898             | 24677800 | 364178 |
| W( ightarrow e u) + light               | 280-500                                             | 0.072084       | 0.9702           | 0.54441             | 4923800  | 364179 |
| $W(\to e \nu) + c$                      |                                                     | 0.072128       | 0.9702           | 0.31675             | 2963400  | 364180 |
| W( ightarrow e u) + b                   |                                                     | 0.072113       | 0.9702           | 0.13391             | 2958000  | 364181 |
| W( ightarrow e u)                       | 500-1000                                            | 0.015224       | 0.9702           | 1.0                 | 5916800  | 364182 |
| W( ightarrow e u)                       | >1000                                               | 0.0012334      | 0.9702           | 1.0                 | 3947000  | 364183 |

Таблица B.2. Смоделированные наборы данных для фоновых процессов рождения  $W (\rightarrow \tau \nu) + \text{jets}$  (FULLSIM).

| Процесс              | $\max\{H_T, p_T^{e\nu}\} \ [\Gamma_{\Im} B]$ | σ [116]   | $k_{\mathrm{F}}$ | $\epsilon_{ m gen}$ | $N_{MC}$ | DSID   |
|----------------------|----------------------------------------------|-----------|------------------|---------------------|----------|--------|
| $W(\tau  u) + light$ | 02-0                                         | 19.152    | 0.9702           | 0.82495             | 24784000 | 364184 |
| W(	au  u) + c        |                                              | 19.153    | 0.9702           | 0.12934             | 9865600  | 364185 |
| W(	au  u) + b        |                                              | 19.163    | 0.9702           | 0.044594            | 17273200 | 364186 |
| W(	au  u) + light    | 70-140                                       | 0.94765   | 0.9702           | 0.67382             | 14808500 | 364187 |
| W(	au  u) + c        |                                              | 0.94673   | 0.9702           | 0.22222             | 9860000  | 364188 |
| W(	au  u) + b        |                                              | 0.9433    | 0.9702           | 0.10391             | 9857000  | 364189 |
| W(	au  u) + light    | 140-280                                      | 0.33936   | 0.9702           | 0.59622             | 9899000  | 364190 |
| W(	au  u) + c        |                                              | 0.33963   | 0.9702           | 0.29025             | 7415000  | 364191 |
| W(	au p) + b         |                                              | 0.33954   | 0.9702           | 0.11229             | 24595900 | 364192 |
| W(	au  u) + light    | 280-500                                      | 0.072065  | 0.9702           | 0.54569             | 4931200  | 364193 |
| W(	au  u) + c        |                                              | 0.071976  | 0.9702           | 0.31648             | 2956400  | 364194 |
| W(	au  u) + b        |                                              | 0.072026  | 0.9702           | 0.13426             | 2954100  | 364195 |
| W(	au u)             | 500-1000                                     | 0.015046  | 0.9702           | 1.0                 | 5945000  | 364196 |
| W(	au u)             | > 1000                                       | 0.0012339 | 0.9702           | 1.0                 | 3946000  | 364197 |

Таблица В.З. Смоделированные наборы данных для фоновых процессов рождения  $Z/\gamma^* (\rightarrow ee) + \text{jets}$  (FULLSIM).

| Процесс                                    | $\max\{H_T, p_T^{e\nu}\} \ [\Gamma \ni B]$ | σ [π6]  | $k_{ m F}$ | $\epsilon_{ m gen}$ | $N_{MC}$ | DSID   |
|--------------------------------------------|--------------------------------------------|---------|------------|---------------------|----------|--------|
| $Z/\gamma^* (\rightarrow e^+ e^-) + light$ | 0 - 70                                     | 1981.8  | 0.9751     | 0.82106             | 7900000  | 364114 |
| $Z/\gamma^*( ightarrow e^+e^-)+c$          |                                            | 1980.8  | 0.9751     | 0.11295             | 4940500  | 364115 |
| $Z/\gamma^*( ightarrow e^+e^-) + b$        |                                            | 1981.7  | 0.9751     | 0.063809            | 7883600  | 364116 |
| $Z/\gamma^*(\rightarrow e^+e^-) + light$   | 70-140                                     | 110.50  | 0.9751     | 0.69043             | 5925000  | 364117 |
| $Z/\gamma^*( ightarrow e^+e^-)+c$          |                                            | 110.63  | 0.9751     | 0.18382             | 1972600  | 364118 |
| $Z/\gamma^*( ightarrow e^+e^-) + b$        |                                            | 110.31  | 0.9751     | 0.11443             | 5855000  | 364119 |
| $Z/\gamma^*(\rightarrow e^+e^-) + light$   | 140-280                                    | 40.731  | 0.9751     | 0.61452             | 4949000  | 364120 |
| $Z/\gamma^*( ightarrow e^+e^-) + c$        |                                            | 40.670  | 0.9751     | 0.23044             | 2962600  | 364121 |
| $Z/\gamma^*( ightarrow e^+e^-) + b$        |                                            | 40.643  | 0.9751     | 0.14966             | 12330900 | 364122 |
| $Z/\gamma^*(\rightarrow e^+e^-) + light$   | 280-500                                    | 8.6743  | 0.9751     | 0.56134             | 1932800  | 364123 |
| $Z/\gamma^*( ightarrow e^+e^-) + c$        |                                            | 8.6711  | 0.9751     | 0.26294             | 988900   | 364124 |
| $Z/\gamma^*( ightarrow e^+e^-) + b$        |                                            | 8.6766  | 0.9751     | 0.17223             | 1976850  | 364125 |
| $Z/\gamma^*( ightarrow e^+e^-)$            | 500-1000                                   | 1.8081  | 0.9751     | 1                   | 2973000  | 364126 |
| $Z/\gamma^*( ightarrow e^+e^-)$            | >1000                                      | 0.14857 | 0.9751     | 1                   | 988000   | 364127 |

Таблица В.4. Смоделированные наборы данных для фоновых процессов рождения  $Z/\gamma^* (\rightarrow \tau \tau) + \text{jets}$  (FULLSIM).

|                                                  |                                           |                | 1.              |                     | 77      |        |
|--------------------------------------------------|-------------------------------------------|----------------|-----------------|---------------------|---------|--------|
| процесс                                          | $\max\{\pi_T, p_T^{\mathcal{T}}\}$ [1 3D] | $\sigma$ [II0] | $\kappa_{ m F}$ | $\epsilon_{ m gen}$ | 1NMC    |        |
| $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + light$ | 02-0                                      | 1981.6         | 0.9751          | 0.82142             | 0002062 | 364128 |
| $Z/\gamma^*(\to \tau^+\tau^-) + c$               |                                           | 1978.8         | 0.9751          | 0.11314             | 4941000 | 364129 |
| $Z/\gamma^*( ightarrow 	au^+	au^-)+b$            |                                           | 1981.8         | 0.9751          | 0.064453            | 7890600 | 364130 |
| $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + light$ | 70-140                                    | 110.37         | 0.9751          | 0.68883             | 5935500 | 364131 |
| $Z/\gamma^*(\to \tau^+\tau^-) + c$               |                                           | 110.51         | 0.9751          | 0.18290             | 1961200 | 364132 |
| $Z/\gamma^*(\to \tau^+\tau^-) + b$               |                                           | 110.87         | 0.9751          | 0.12827             | 5912550 | 364133 |
| $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + light$ | 140-280                                   | 40.781         | 0.9751          | 0.60821             | 4956000 | 364134 |
| $Z/\gamma^*(\to \tau^+\tau^-) + c$               |                                           | 40.740         | 0.9751          | 0.22897             | 2973000 | 364135 |
| $Z/\gamma^*(\to \tau^+\tau^-) + b$               |                                           | 40.761         | 0.9751          | 0.13442             | 4932950 | 364136 |
| $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + light$ | 280-500                                   | 8.5502         | 0.9751          | 0.56036             | 1973000 | 364137 |
| $Z/\gamma^*(\to \tau^+\tau^-) + c$               |                                           | 8.6707         | 0.9751          | 0.26245             | 986000  | 364138 |
| $Z/\gamma^*(\to \tau^+\tau^-) + b$               |                                           | 8.6804         | 0.9751          | 0.17313             | 1974950 | 364139 |
| $Z/\gamma^*( ightarrow 	au^+	au^-)$              | 500-1000                                  | 1.8096         | 0.9751          | 1                   | 2944800 | 364140 |
| $Z/\gamma^*(\to \tau^+\tau^-)$                   | >1000                                     | 0.14834        | 0.9751          | 1                   | 980000  | 364141 |

| Процесс                                     | $\sigma$ [пб] | $k_{ m F}$ | $\epsilon_{ m gen}$ | $N_{MC}$  | DSID   |
|---------------------------------------------|---------------|------------|---------------------|-----------|--------|
| $t\bar{t} \rightarrow nonallhad$            | 730.17        | 1.1391     | 0.54383             | 118443000 | 410501 |
| Single- $t$ ( $t$ -канал), $t$ -кварк       | 43.739        | 1.0094     | 1                   | 9927200   | 410011 |
| Single- $t$ ( $t$ -канал), $\bar{t}$ -кварк | 25.778        | 1.0193     | 1                   | 9804800   | 410012 |
| <i>Wt</i> , <i>t</i> -кварк                 | 34.009        | 1.054      | 1                   | 9950800   | 410013 |
| $Wt, \bar{t}$ -кварк                        | 33.989        | 1.054      | 1                   | 9957600   | 410014 |
| Single- $t$ ( $s$ -канал), $t$ -кварк       | 2.0517        | 1.0046     | 1                   | 997800    | 410025 |
| Single- $t$ ( $s$ -канал), $\bar{t}$ -кварк | 1.2615        | 1.0215     | 1                   | 995400    | 410026 |

Таблица В.5. Смоделированные наборы данных для фоновых процессов рождения  $t\bar{t}$  и Single-t (FullSIM).

Таблица В.6. Смоделированные наборы данных для фоновых процессов рождения дибозонов (FullSim).

| Процесс                      | $\sigma$ [пб] | $k_{\rm F}$ | $\epsilon_{ m gen}$ | $N_{MC}$ | DSID   |
|------------------------------|---------------|-------------|---------------------|----------|--------|
| $Z(q\bar{q'})Z(\ell\ell)$    | 15.561        | 1           | 0.14089             | 5317000  | 363356 |
| $W(q\bar{q'})Z(\ell\ell)$    | 3.433         | 1           | 1                   | 5324000  | 363358 |
| $W^+(q\bar{q'})W^-(\ell\nu)$ | 24.71         | 1           | 1                   | 7093000  | 363359 |
| $W^-(q\bar{q'})W^+(\ell\nu)$ | 24.728        | 1           | 1                   | 14224000 | 363360 |
| $W(\ell\nu)Z(q\bar{q})$      | 11.42         | 1           | 1                   | 7100000  | 363489 |

#### Приложение Г

### Спектры кинематических переменных после первичного отбора в поиске возбужденных электронов

На Рисунках Г.1–Г.13 представлены распределения по кинематическим переменным после *переичного* отбора в конечном состоянии  $e\nu J$ .



Рис. Г.З.  $\eta$  лидирующей струи.

Рис. Г.4.  $\phi$  лидирующей струи.



Рис. Г.9.  $\Delta \varphi(e, E_{\mathrm{T}}^{\mathrm{miss}})$ .







Рис. Г.8.  $m_{\rm T}^{e\nu}$ .



Рис. Г.10.  $\Delta \varphi(e, W)$ .


Рис. Г.13.  $p_{\rm T}^{\rm balance}$ .

#### Приложение Д

## Спектры кинематических переменных в интегральной W CR в поиске возбужденных электронов

На Рисунках Д.1–Д.13 представлены распределения по кинематическим переменным для конечного состояния  $e\nu J$  в интегральной W CR (Раздел 6.3).



Рис. Д.З.  $\eta$  лидирующей струи.

Рис. Д.4.  $\phi$  лидирующей струи.

146





Рис. Д.9.  $\Delta \varphi(e, E_{\mathrm{T}}^{\mathrm{miss}})$ .







Рис. Д.8.  $m_{\rm T}^{e\nu}$ .



Рис. Д.10.  $\Delta \varphi(e, W)$ .



Рис. Д.13.  $p_{\rm T}^{\rm balance}$ .

#### Приложение Е

## Спектры кинематических переменных в интегральной $t\bar{t}$ CR в поиске возбужденных электронов

На Рисунках Е.1–Е.13 представлены распределения по кинематическим переменным для конечного состояния  $e\nu J$  в интегральной  $t\bar{t}$  CR (Раздел 6.3).



Рис. Е.З. *п* лидирующей струи.

Рис. Е.4.  $\phi$  лидирующей струи.

150



Рис. Е.9.  $\Delta \varphi(e, E_{\mathrm{T}}^{\mathrm{miss}}).$ 



Рис. Е.б. *т*<sub>J</sub>.







Рис. Е.10.  $\Delta \varphi(e, W)$ .



Рис. Е.13.  $p_{\rm T}^{\rm balance}$ .

#### Приложение Ж

## Спектры кинематических переменных в интегральной $m_J$ VR в поиске возбужденных электронов

На Рисунках Ж.1–Ж.13 показаны распределения по кинематическим переменным в интегральной  $m_J$  VR (Раздел 6.4) в поиске возбужденных электронов в конечном состоянии  $e\nu J$ .



Рис. Ж.З.  $\eta$  лидирующей струи.



Рис. Ж.2. Е лидирующей струи.



Рис. Ж.4.  $\phi$  лидирующей струи.

153



Рис. Ж.9.  $\Delta \varphi(e, E_{\mathrm{T}}^{\mathrm{miss}})$ .



Рис. Ж.б. *т*<sub>J</sub>.



Рис. Ж.8.  $m_{\rm T}^{e\nu}$ .



Рис. Ж.10.  $\Delta \varphi(e, W)$ .



Рис. Ж.13.  $p_{\rm T}^{\rm balance}$ .

#### Приложение З

## Спектры кинематических переменных в интегральной *b*-jet VR в поиске возбужденных электронов

На Рисунках З.1–З.13 показаны распределения по кинематическим переменным для конечного состояния  $e\nu J$  в интегральной *b*-jet VR (Раздел 6.4) для поиска возбужденных электронов.



Рис. З.З. *п* лидирующей струи.



Рис. З.2. Е лидирующей струи.



Рис. З.4.  $\phi$  лидирующей струи.



.9.  $\Delta \varphi(e, E_{\mathrm{T}})$ 



Рис. З.13.  $p_{\rm T}^{\rm balance}$ .

### Приложение И

# Числа событий после фита в контрольных областях в поиске возбужденных электронов

Числа наблюдаемых и ожидаемых событий в конечном состоянии  $e\nu J$  после фита фоновых процессов в контрольных областях представлены в Таблицах И.1–И.5 для W CR,  $t\bar{t}$  CR, SR,  $m_J$  VR, b-jet VR, соответственно. Таблица И.1. Числа событий в W CR поиска e<sup>\*</sup> в конечном состоянии еи J. Для каждой контрольной области CRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате фита в CRi.

| Числа событий           | CR2           | CR3            | CR4            | CR5            | CR6            | CR7           | CR8           | CR9            |
|-------------------------|---------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|
| Наблюдено               | 9198          | 9198           | 9168           | 9090           | 7312           | 4760          | 2903          | 1834           |
| Фон                     | $9200\pm100$  | $9200 \pm 100$ | $9170 \pm 100$ | $9090 \pm 100$ | $7310 \pm 90$  | $4800\pm300$  | $2900 \pm 60$ | $1830 \pm 50$  |
| $W \to e\nu$            | $5900\pm400$  | $5900\pm400$   | $5700\pm600$   | $5300\pm600$   | $4900 \pm 400$ | $3500\pm500$  | $1600\pm400$  | $1000 \pm 300$ |
| $Z/\gamma^* \to ee$     | $24 \pm 13$   | $24 \pm 13$    | $19 \pm 11$    | $14 \pm 8$     | $10\pm 5$      | $6\pm 3$      | $4\pm 2$      | $2.1 \pm 0.9$  |
| $t ar{t}$               | $1200\pm300$  | $1100\pm300$   | $1300\pm500$   | $1700\pm600$   | $700 \pm 400$  | $100 \pm 200$ | $500 \pm 400$ | $300 \pm 200$  |
| Single-t                | $210 \pm 20$  | $210 \pm 20$   | $200 \pm 20$   | $200 \pm 20$   | $149\pm11$     | $97\pm 6$     | $61 \pm 5$    | $40 \pm 4$     |
| Fake-электроны          | $460\pm120$   | $460\pm120$    | $450 \pm 120$  | $430\pm110$    | $370 \pm 90$   | $220\pm50$    | $140 \pm 40$  | $80 \pm 20$    |
| $\Lambda\Lambda$        | $560 \pm 110$ | $560\pm110$    | $550\pm110$    | $550\pm110$    | $450\pm100$    | $310\pm70$    | $200 \pm 40$  | $120 \pm 30$   |
| $W \to \tau \nu$        | $800 \pm 200$ | $800 \pm 200$  | $800 \pm 200$  | $800 \pm 200$  | $700 \pm 200$  | $460 \pm 110$ | $310\pm80$    | $210\pm60$     |
| $Z/\gamma^* 	o 	au 	au$ | $160 \pm 50$  | $160 \pm 50$   | $160\pm50$     | $160\pm50$     | $120 \pm 30$   | $80 \pm 20$   | $50 \pm 20$   | $28\pm 8$      |

Таблица И.2. Числа событий в  $tar{t}$  СR поиска  $e^*$  в конечном состоянии  $e\nu J$ . Для каждой контрольной области CRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате фита в СRi.

| Числа событий           | CR1           | CR2             | CR3             | CR4           | CR5           | CR6               | CR7           | CR8           | CR9             |
|-------------------------|---------------|-----------------|-----------------|---------------|---------------|-------------------|---------------|---------------|-----------------|
| Наблюдено               | 48            | 73              | 94              | 54            | 62            | 29                | 6             | 10            | 4               |
| Фон                     | $48\pm7$      | $73 \pm 9$      | $94 \pm 10$     | $54\pm 8$     | $62\pm 8$     | $29\pm 6$         | $9\pm 3$      | $10\pm 3$     | $4\pm 2$        |
| $W \to e\nu$            | $0.3 \pm 0.2$ | $4\pm3$         | $5\pm 3$        | $5\pm 4$      | $5\pm 4$      | $5\pm 4$          | $4\pm3$       | $0.11\pm0.12$ | $0.04 \pm 0.03$ |
| $Z/\gamma^* \to ee$     | $0.3 \pm 0.2$ | $0.30\pm0.11$   | $0.4 \pm 0.2$   | $0.15\pm0.14$ | $0.2 \pm 0.2$ | $0.10\pm0.05$     | $0.04\pm0.04$ | $0.02\pm0.02$ | $0.010\pm0.010$ |
| $tar{t}$                | $47 \pm 7$    | $64 \pm 9$      | $79 \pm 11$     | $41 \pm 9$    | $46 \pm 9$    | $15\pm7$          | $1\pm 2$      | $7 \pm 4$     | $4 \pm 2$       |
| Single-t                | $0.4 \pm 0.5$ | $2.5 \pm 1.1$   | $4.8\pm1.3$     | $6\pm 2$      | $6\pm 2$      | $6\pm 2$          | $2.6\pm1.4$   | $1.1\pm0.5$   | $0.4 \pm 0.3$   |
| <b>Fake-электроны</b>   | I             | $2.2 \pm 0.8$   | $5\pm 2$        | $2.0\pm0.8$   | $5\pm 2$      | $2.5\pm0.9$       | $1.8\pm0.7$   | $1.6\pm0.6$   | Ι               |
| AA                      |               | I               |                 | $0.13\pm0.06$ | $0.13\pm0.10$ | $0.13\pm0.10$     | I             | I             | Ι               |
| $Z/\gamma^* 	o 	au 	au$ | I             | $0.02 \pm 0.02$ | $0.06 \pm 0.03$ | $0.04\pm0.02$ | $0.04\pm0.02$ | $0.020 \pm 0.010$ | I             | I             | I               |

Таблица И.З. Числа событий в SR поиска e<sup>\*</sup> в конечном состоянии еи J. Для каждой сигнальной области SRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате фита в СRi.

| Числа событий                   | SR1           | SR2           | SR3             | SR4           | SR5             | SR6           | SR7           | SR8           | SR9             |
|---------------------------------|---------------|---------------|-----------------|---------------|-----------------|---------------|---------------|---------------|-----------------|
| Наблюдено                       | 13            | 25            | 39              | 35            | 43              | 34            | 15            | 16            | 8               |
| Фон                             | $13\pm 5$     | $17\pm 5$     | $26\pm 8$       | $25\pm 5$     | $34\pm 8$       | $30\pm 6$     | $12 \pm 4$    | $8\pm 2$      | $6\pm 2$        |
| $W \to e\nu$                    | $2\pm 2$      | $7\pm 3$      | $11 \pm 4$      | $13\pm3$      | $14\pm 5$       | $17 \pm 4$    | $7\pm 3$      | $3.2 \pm 1.3$ | $2.2 \pm 1.1$   |
| $Z/\gamma^* \to ee$             | $1.3\pm1.2$   | $1.6 \pm 1.1$ | $2.1\pm1.3$     | $1.7\pm1.0$   | $1.4 \pm 0.9$   | $0.6\pm0.3$   | $0.14\pm0.10$ | $0.10\pm0.05$ | $0.04 \pm 0.03$ |
| $t \overline{t}$                | $2.9\pm1.2$   | $5\pm 2$      | $7\pm 3$        | $4\pm 3$      | $11\pm 5$       | $3\pm 2$      | $0.1\pm0.3$   | $1\pm 2$      | $0.4\pm0.7$     |
| Single-t                        | $0.7\pm0.3$   | $1.9\pm0.5$   | $2.6\pm0.6$     | $3.0 \pm 1.4$ | $3.0 \pm 1.4$   | $4\pm 2$      | $1.9\pm0.7$   | $1.9\pm0.6$   | $1.7\pm0.7$     |
| <b>Fake-электроны</b>           | $6\pm 2$      | $1.9\pm0.3$   | $3.2 \pm 1.0$   | $0.6\pm0.3$   | $0.25\pm0.07$   | $0.7\pm0.3$   | $0.06\pm0.11$ | I             | I               |
| AA                              | $0.0 \pm 1.1$ | $0.2 \pm 1.1$ | $1\pm 2$        | $2.9\pm0.9$   | $3.4\pm0.7$     | $3\pm 2$      | $2\pm 3$      | $1.1 \pm 1.1$ | $1.1 \pm 1.1$   |
| W 	o 	au                        | I             | I             | $0.0\pm0.5$     | $0.1\pm0.2$   | $0.34\pm0.10$   | $0.2\pm0.6$   | $0.21\pm0.09$ | $0.21\pm0.08$ | $0.20\pm0.09$   |
| $Z/\gamma^*  ightarrow 	au 	au$ | $0.04\pm0.02$ | $0.04\pm0.02$ | $0.06 \pm 0.03$ | $0.03\pm0.02$ | $0.08 \pm 0.06$ | $0.06\pm0.05$ | $0.05\pm0.06$ | $0.1\pm0.2$   | I               |

Таблица И.4. Числа событий в  $m_J$  VR поиска  $e^*$  в конечном состоянии  $e \nu J$ . Для каждой проверочной области VRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате фита в CRi.

| Числа событий           | VR1           | VR2         | VR3             | VR4           | VR5           | VR6             | VR7             | VR8               | VR9             |
|-------------------------|---------------|-------------|-----------------|---------------|---------------|-----------------|-----------------|-------------------|-----------------|
| Наблюдено               | 31            | 58          | 72              | 33            | 46            | 35              | 14              | 11                | 9               |
| $\Phi_{ m OH}$          | $30\pm 6$     | $50\pm9$    | $64 \pm 11$     | $36 \pm 14$   | $47 \pm 12$   | $23\pm 8$       | $6\pm 3$        | $10\pm 5$         | $4\pm 2$        |
| $W \to e\nu$            | $2.0 \pm 1.2$ | $5.8\pm1.5$ | $7\pm 2$        | $6\pm 2$      | $11\pm 6$     | $5\pm 4$        | $4\pm 2$        | $2.7 \pm 1.3$     | $0.9 \pm 0.9$   |
| $Z/\gamma^* \to ee$     | $1.1 \pm 0.7$ | $1.8\pm0.9$ | $2.2 \pm 1.1$   | $1.0\pm0.5$   | $1.2\pm0.7$   | $0.8\pm0.4$     | $0.20 \pm 0.11$ | $0.11 \pm 0.07$   | $0.05\pm0.03$   |
| $t \overline{t}$        | $22\pm 6$     | $35\pm9$    | $46 \pm 11$     | $22 \pm 13$   | $30\pm10$     | $11 \pm 6$      | $1\pm 2$        | $6\pm 5$          | $3\pm 2$        |
| Single-t                | $1.4\pm0.8$   | $2.4\pm0.8$ | $3.3 \pm 1.3$   | $3\pm 2$      | $3.3 \pm 1.3$ | $2.7 \pm 1.1$   | $0.4\pm0.5$     | Ι                 | Ι               |
| <b>Fake-электроны</b>   | $2.0\pm0.3$   | $2.1\pm0.5$ | $2.6\pm0.5$     | $2.8 \pm 1.3$ | $0.7\pm0.6$   | $4\pm 2$        | I               | I                 | Ι               |
| $\Lambda\Lambda$        | $1.0\pm0.7$   | $2\pm 2$    | $3\pm 2$        | $1.7\pm1.3$   | $0.6\pm0.7$   | $0.0 \pm 0.8$   | I               | $0.3 \pm 0.2$     | $0.2\pm0.2$     |
| $W 	o 	au \nu$          | I             | I           | $0.22 \pm 0.13$ | $0.2 \pm 0.2$ | $0.22\pm0.13$ | $0.26 \pm 0.12$ | $0.26\pm0.12$   | $0.27\pm0.13$     | $0.04\pm0.08$   |
| $Z/\gamma^* 	o 	au 	au$ |               | ļ           | $0.02 \pm 0.02$ | $0.04\pm0.03$ | $0.02\pm0.07$ | $0.05 \pm 0.05$ | $0.03 \pm 0.06$ | $0.010 \pm 0.010$ | $0.010\pm0.010$ |

Таблица И.5. Числа событий в b-jet VR поиска e\* в конечном состоянии ev J. Для каждой проверочной области VRi приведены наблюдаемые числа событий и оценки вкладов фоновых процессов, полученных в результате фита в СRi.

| Числа событий           | VR1           | VR2             | VR3           | VR4               | VR5           | VR6               | VR7               | VR8           | VR9             |
|-------------------------|---------------|-----------------|---------------|-------------------|---------------|-------------------|-------------------|---------------|-----------------|
| Наблюдено               | 28            | 53              | 64            | 34                | 35            | 27                | 10                | 4             | -               |
| Фон                     | $28\pm 6$     | $42 \pm 9$      | $54 \pm 11$   | $33 \pm 9$        | $51 \pm 13$   | $25\pm9$          | $6\pm 2$          | $14\pm 8$     | $8\pm 6$        |
| $W \to e\nu$            | $0.9 \pm 0.3$ | $1.4 \pm 0.6$   | $2.8 \pm 1.0$ | $2.6\pm0.8$       | $4\pm 2$      | $3.3 \pm 0.9$     | $0.6\pm0.9$       | $0.6\pm0.3$   | $0.13 \pm 0.09$ |
| $Z/\gamma^* \to ee$     | $0.5\pm0.6$   | $0.9 \pm 0.6$   | $1.3\pm0.6$   | $1.0\pm0.5$       | $1.1 \pm 0.5$ | $0.4 \pm 0.2$     | $0.15\pm0.08$     | $0.09\pm0.05$ | $0.02 \pm 0.02$ |
| $t\overline{t}$         | $19\pm 5$     | $32\pm 8$       | $40 \pm 9$    | $22 \pm 8$        | $36 \pm 12$   | $12 \pm 7$        | $0.5 \pm 1.5$     | $11\pm 8$     | $6\pm 6$        |
| Single-t                | $2.8\pm0.9$   | $7 \pm 3$       | $8\pm 3$      | $7\pm 3$          | $9 \pm 4$     | $5\pm 5$          | $3.5 \pm 1.2$     | $2.2\pm0.6$   | $1.8 \pm 1.3$   |
| <b>Fake-электроны</b>   | $5\pm 2$      | $0.42 \pm 0.10$ | $1.4\pm0.5$   | I                 | I             | $3.5\pm1.4$       | $1.6\pm0.7$       | $0.08\pm0.02$ | $0.18\pm0.06$   |
| $\Lambda\Lambda$        | $0.1 \pm 0.4$ | $0.7\pm0.7$     | $0.7 \pm 1.1$ | $0.1 \pm 0.3$     | $1.4 \pm 1.5$ | $0\pm 2$          | I                 | I             | I               |
| $W 	o 	au \nu$          |               | I               | $0.01\pm0.02$ | $0.01 \pm 0.06$   | $0.2 \pm 0.2$ | $0.10\pm0.02$     | I                 | I             | Ι               |
| $Z/\gamma^* 	o 	au 	au$ |               | $0.0 \pm 0.2$   | $0.0 \pm 0.2$ | $0.010 \pm 0.010$ | $0.03\pm0.02$ | $0.010 \pm 0.010$ | $0.000 \pm 0.010$ | I             | I               |

## Приложение К

## Числа событий со статистическими и систематическим неопределенностями в поиске возбужденных электронов

Таблица К.1. Числа событий (со статистическими неопределенностями в %) в областях поиска возбужденных электронов.

|                                    | WCR2            | WCR3            | WCR4            | WCR5            | WCR6            |
|------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Data                               | 9198            | 9198            | 9168            | 9090            | 7312            |
| $W \rightarrow e\nu$               | 7424.196 (0.98) | 7424.196 (0.98) | 7403.345 (0.98) | 7345.011 (0.98) | 5923.102 (0.95) |
| $Z/\gamma * \rightarrow ee$        | 24.269 (6.66)   | 24.269 (6.66)   | 19.028 (7.90)   | 14.301 (9.66)   | 10.081 (5.67)   |
| tt                                 | 1376.104 (1.69) | 1376.104 (1.69) | 1366.565 (1.69) | 1347.622(1.70)  | 1005.960 (1.98) |
| Single top                         | 205.767 (4.54)  | 205.767 (4.54)  | 204.789 (4.56)  | 202.418 (4.59)  | 149.178 (5.32)  |
| Fake                               | 460.481 (7.91)  | 460.481 (7.91)  | 448.055 (8.08)  | 431.701 (8.28)  | 365.891 (8.49)  |
| Diboson                            | 555.388 (4.42)  | 555.388 (4.42)  | 553.716 (4.44)  | 550.979(4.46)   | 450.727 (4.82)  |
| $W \rightarrow \tau \nu$           | 770.852 (2.59)  | 770.852 (2.59)  | 770.132 (2.59)  | 766.392 (2.59)  | 651.172 (2.63)  |
| $Z/\gamma * \rightarrow \tau \tau$ | 156.392 (4.23)  | 156.392(4.23)   | 156.300 (4.24)  | 155.924 (4.25)  | 123.122 (3.43)  |
| EL 0200                            | 174.051 (7.20)  | -               | -               | -               | -               |
| EL 0300                            | -               | 189.324 (6.40)  | -               | -               | -               |
| EL 0400                            | -               | -               | 200.452 (5.44)  | -               | -               |
| EL 0500                            | -               | -               | -               | 174.360 (7.99)  | -               |
| EL 0600                            | -               | -               | -               | _               | 139.989 (5.99)  |

#### 164

|                                    | WCR7            | WCR8            | WCR9            | TCR1           | TCR2           |
|------------------------------------|-----------------|-----------------|-----------------|----------------|----------------|
| Data                               | 4760            | 2903            | 1834            | 48             | 73             |
| $W \rightarrow e\nu$               | 3861.612 (0.98) | 2425.318 (1.16) | 1551.177 (1.29) | 0.275 (49.78)  | 4.342 (84.95)  |
| $Z/\gamma * \rightarrow ee$        | 6.280 (4.74)    | 3.855 (5.37)    | 2.081 (7.04)    | 0.309 (27.78)  | 0.296 (27.04)  |
| tt                                 | 590.174 (2.59)  | 327.084 (3.60)  | 197.780 (4.92)  | 58.828 (7.45)  | 76.200 (7.41)  |
| Single top                         | 96.963 (6.67)   | 60.796 (8.74)   | 39.644 (11.01)  | 0.399 (70.72)  | 2.477 (30.46)  |
| Fake                               | 219.951 (10.56) | 143.777 (12.64) | 82.897 (17.08)  | 0 (0)          | 2.154 (160.16) |
| Diboson                            | 307.595 (5.56)  | 202.653 (7.12)  | 123.905 (7.92)  | 0 (0)          | 0 (0)          |
| $W \rightarrow \tau \nu$           | 457.672 (2.64)  | 306.865 (3.01)  | 212.779 (3.46)  | 0 (0)          | 0 (0)          |
| $Z/\gamma * \rightarrow \tau \tau$ | 78.468 (3.78)   | 49.084 (4.20)   | 27.976 (4.32)   | 0.005 (100.00) | 0.023 (82.16)  |
| EL 0100                            | -               | -               | -               | 2.535 (53.01)  | -              |
| EL 0200                            | -               | -               | -               | -              | 7.765 (30.68)  |
| EL 0700                            | 129.116 (5.43)  | -               | -               | -              | -              |
| EL 0800                            | -               | 93.964 (6.24)   | -               | -              | -              |
| EL 0900                            | -               | 86.175 (4.66)   | -               | -              | -              |
| EL 1000                            | -               | -               | 62.954 (5.34)   | -              | -              |
| EL 1250                            | -               | -               | 46.089 (4.70)   | -              | -              |
| EL 1500                            | -               | -               | 26.090 (4.82)   | -              | -              |
| EL 1750                            | -               | -               | 14.592 (4.20)   | -              | -              |
| EL 2000                            | -               | -               | 9.514 (3.91)    | -              | -              |
| EL 2250                            | -               | -               | 4.830 (4.08)    | -              | -              |
| EL 2500                            | -               | -               | 2.993 (4.33)    | -              | -              |
| EL 2750                            | -               | -               | 1.583 (4.18)    | -              | -              |
| EL 3000                            | _               | _               | 0.918 (6.52)    | _              | _              |
| EL 3250                            | -               | -               | 0.563 (4.37)    | -              | -              |
| EL 3500                            | -               | -               | 0.317 (4.67)    | -              | -              |
| EL 3750                            | -               | -               | 0.187 (4.59)    | -              | -              |
| EL 4000                            | _               | -               | 0.119 (4.14)    | -              | -              |

Таблица К.2. Числа событий (со статистическими неопределенностями в %) в областях поиска возбужденных электронов.

Таблица К.З. Числа событий (со статистическими неопределенностями в %) в областях поиска возбужденных электронов.

|                             | TCR3           | TCR4           | TCR5           | TCR6           | TCR7           |
|-----------------------------|----------------|----------------|----------------|----------------|----------------|
| Data                        | 94             | 54             | 62             | 29             | 9              |
| $W \rightarrow e\nu$        | 4.732 (78.08)  | 5.144 (72.73)  | 5.309(70.50)   | 4.931 (75.79)  | 3.886 (94.80)  |
| $Z/\gamma * \rightarrow ee$ | 0.367(24.77)   | 0.148 (41.84)  | 0.189(30.93)   | 0.100 (38.27)  | 0.040 (49.27)  |
| tt                          | 95.688 (6.59)  | 42.611 (11.02) | 36.906 (10.74) | 22.800 (14.50) | 5.519 (23.42)  |
| Single top                  | 4.831 (25.50)  | 5.653 (23.12)  | 5.810 (19.88)  | 6.185 (19.14)  | 2.545 (28.95)  |
| Fake                        | 5.470 (86.87)  | 2.001 (203.23) | 4.750 (99.68)  | 2.540 (106.84) | 1.825 (103.97) |
| Diboson                     | 0 (0)          | 0.133 (100.00) | 0.133 (100.00) | 0.133 (100.00) | 0 (0)          |
| $W \rightarrow \tau \nu$    | 0 (0)          | 0 (0)          | 0 (0)          | 0.009 (100.00) | 0.009 (100.00) |
| $Z/\gamma * \to \tau \tau$  | 0.056 (53.99)  | 0.037 (70.74)  | 0.037(70.74)   | 0.022 (82.89)  | 0 (0)          |
| EL 0300                     | 10.920 (28.38) | -              | -              | -              | -              |
| EL 0400                     | -              | 4.340 (34.13)  | -              | -              | -              |
| EL 0500                     | -              | -              | 3.680 (38.47)  | -              | -              |
| EL 0600                     | _              | _              | _              | 6.009 (28.38)  | -              |
| EL 0700                     | _              | _              | _              | _              | 3.919 (26.34)  |

| Габлица К.4. Числа событий (со статистическими неопределенностями в %) в областях | по |
|-----------------------------------------------------------------------------------|----|
| иска возбужденных электронов.                                                     |    |

|                                    | TCR8           | TCR9           | SR1             | SR2            | SR3            |
|------------------------------------|----------------|----------------|-----------------|----------------|----------------|
| Data                               | 10             | 4              | 13              | 25             | 39             |
| $W \rightarrow e\nu$               | 0.109 (33.26)  | 0.044 (54.77)  | 1.934 (26.12)   | 8.257 (18.22)  | 13.311 (14.36) |
| $Z/\gamma * \rightarrow ee$        | 0.025 (65.97)  | 0.005 (100.00) | 1.289 (28.26)   | 1.580 (23.42)  | 2.094 (18.80)  |
| tt                                 | 4.263 (24.00)  | 2.186 (31.81)  | 3.609 (32.72)   | 5.919 (23.47)  | 8.079 (20.15)  |
| Single top                         | 1.088 (44.76)  | 0.428 (70.78)  | 0.727 (58.29)   | 1.930 (42.03)  | 2.582 (34.63)  |
| Fake                               | 1.616 (116.82) | 0 (0)          | 6.124 (49.20)   | 1.924 (50.41)  | 3.235 (58.56)  |
| Diboson                            | 0 (0)          | 0 (0)          | 0.044 (2216.78) | 0.155 (625.51) | 0.993 (119.33) |
| $W \rightarrow \tau \nu$           | 0 (0)          | 0 (0)          | 0.008 (100.00)  | 0.008 (100.00) | 0.008 (100.00) |
| $Z/\gamma * \rightarrow \tau \tau$ | 0 (0)          | 0 (0)          | 0.036 (100.00)  | 0.040 (89.72)  | 0.058~(69.65)  |
| EL 0100                            | -              | -              | 325.470 (4.44)  | _              | _              |
| EL 0200                            | -              | -              | _               | 895.530 (3.20) | _              |
| EL 0300                            | -              | -              | _               | _              | 909.230 (3.24) |
| EL 0800                            | 3.575 (40.39)  | -              | _               | _              | _              |
| EL 0900                            | 2.801 (55.11)  | -              | -               | _              | -              |
| EL 1000                            | -              | 3.673 (32.93)  | -               | _              | -              |
| EL 1250                            | -              | 2.402 (49.45)  | -               | _              | -              |
| EL 1500                            | -              | 0.827 (26.12)  | -               | -              | -              |
| EL 1750                            | -              | 0.649 (22.24)  | -               | _              | -              |
| EL 2000                            | -              | 0.424 (25.69)  | -               | -              | -              |
| EL 2250                            | -              | 0.187 (22.62)  | -               | _              | -              |
| EL 2500                            | -              | 0.059(27.85)   | -               | _              | -              |
| EL 2750                            | -              | 0.076 (37.87)  | -               | _              | -              |
| EL 3000                            | -              | 0.014 (43.66)  | -               | _              | -              |
| EL 3250                            | -              | 0.013 (26.24)  | -               | _              | -              |
| EL 3500                            | -              | 0.007 (28.83)  | -               | -              | -              |
| EL 3750                            | -              | 0.005 (30.97)  | -               | -              | -              |
| EL 4000                            | _              | 0.004 (61.01)  | _               | _              | _              |

Таблица К.5. Числа событий (со статистическими неопределенностями в %) в областях поиска возбужденных электронов.

|                             | SR4            | SR5            | SR6            | SR7            | SR8            |
|-----------------------------|----------------|----------------|----------------|----------------|----------------|
| Data                        | 35             | 43             | 34             | 15             | 16             |
| $W \rightarrow e\nu$        | 16.533(16.99)  | 19.767 (18.38) | 21.082 (14.97) | 8.159 (28.06)  | 4.845 (32.18)  |
| $Z/\gamma * \rightarrow ee$ | 1.671 (28.47)  | 1.444 (25.30)  | 0.550 (19.72)  | 0.144(25.66)   | 0.097(26.81)   |
| tt                          | 4.624 (23.45)  | 8.845 (17.60)  | 5.168 (21.79)  | 0.703(57.76)   | 0.702 (57.75)  |
| Single top                  | 2.980 (52.06)  | 2.961 (52.31)  | 4.252 (40.38)  | 1.878 (42.54)  | 1.882 (42.51)  |
| Fake                        | 0.596(284.45)  | 0.246 (707.33) | 0.666(252.50)  | 0.060 (900.00) | 0 (0)          |
| Diboson                     | 2.910 (53.85)  | 3.433 (49.78)  | 3.237 (79.40)  | 2.040 (100.00) | 1.082 (73.66)  |
| $W \rightarrow \tau \nu$    | 0.072 (100.00) | 0.341 (45.83)  | 0.209 (57.79)  | 0.209(57.79)   | 0.208 (58.05)  |
| $Z/\gamma * \to \tau \tau$  | 0.035(70.71)   | 0.082 (65.05)  | 0.065 (78.05)  | 0.047 (100.00) | 0.141 (100.00) |
| EL 0400                     | 692.917 (3.00) | -              | -              | -              | -              |
| EL 0500                     | _              | 627.721 (3.69) | -              | _              | -              |
| EL 0600                     | _              | -              | 575.108 (2.81) | _              | -              |
| EL 0700                     | _              | -              | -              | 460.430 (2.66) | -              |
| EL 0800                     | -              | -              | -              | -              | 415.393 (2.74) |
| EL 0900                     | _              | -              | -              | _              | 358.570 (2.31) |

Таблица К.6. Числа событий (со статистическими неопределенностями в %) в областях поиска возбужденных электронов.

|                                    | SR9            |
|------------------------------------|----------------|
| Data                               | 8              |
| $W \rightarrow e\nu$               | 3.351 (45.54)  |
| $Z/\gamma * \rightarrow ee$        | 0.040 (36.80)  |
| tt                                 | 0.236 (100.00) |
| Single top                         | 1.716 (45.60)  |
| Fake                               | 0 (0)          |
| Diboson                            | 1.082(73.66)   |
| $W \rightarrow \tau \nu$           | 0.196(61.47)   |
| $Z/\gamma * \rightarrow \tau \tau$ | 0 (0)          |
| EL 1000                            | 287.096 (2.53) |
| EL 1250                            | 191.979 (2.21) |
| EL 1500                            | 117.470 (2.26) |
| EL 1750                            | 65.944 (2.07)  |
| EL 2000                            | 39.104 (2.06)  |
| EL 2250                            | 21.879 (2.19)  |
| EL 2500                            | 12.378 (1.99)  |
| EL 2750                            | 7.262 (2.03)   |
| EL 3000                            | 4.128 (3.31)   |
| EL 3250                            | 2.370 (2.12)   |
| EL 3500                            | 1.386 (2.05)   |
| EL 3750                            | 0.789 (2.29)   |
| EL 4000                            | 0.464 (2.13)   |

Таблица К.7. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR2 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 2                                      | ee<br>↑                                 |                                        | top                                    |                                        | a a                                       | 2                                      | +<br>+                                    | 0                                      |
|-------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
|                                     | t                                      | *                                       |                                        | ele                                    |                                        | osc                                       | ↑                                      | *                                         | 020                                    |
|                                     | - M                                    | C/Z                                     | tt                                     | Sing                                   | Fak                                    | Dib                                       | M                                      | C/Z                                       | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.25 \\ \downarrow -1.24$   | $\uparrow +1.40 \\ \downarrow -1.40$    | ↑+1.09<br>↓-1.09                       | ↑+1.14<br>↓-1.14                       | _                                      | $\uparrow +1.29 \\ \downarrow -1.29$      | $\uparrow +1.10 \\ \downarrow -1.10$   | $\uparrow +1.15 \\ \downarrow -1.15$      | $\uparrow +1.48 \\ \downarrow -1.48$   |
| Default Electron Isolation Eff      | $\uparrow +0.92$<br>$\downarrow -0.91$ | ↑+1.09<br>↓-1.09                        | $\uparrow +0.68$<br>$\downarrow -0.68$ | ↑+1.01<br>↓-1.01                       | _                                      | $\uparrow +1.02$<br>$\downarrow -1.02$    | $\uparrow +0.62$<br>$\downarrow -0.62$ | $\uparrow +0.63$<br>$\downarrow -0.63$    | $\uparrow +3.90$<br>$\downarrow -3.90$ |
| Default Electron Reconstruction Eff | $\uparrow +0.22 \\ \downarrow -0.21$   | $\uparrow +0.22 \\ \downarrow -0.22$    | $\uparrow +0.21 \\ \downarrow -0.21$   | ↑+0.20<br>↓-0.20                       | _                                      | $\uparrow +0.22 \\ \downarrow -0.22$      | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.22 \\ \downarrow -0.22$      | $\uparrow +0.21 \\ \downarrow -0.21$   |
| Electrons Scale                     | $\uparrow -0.72 \\ \downarrow +0.69$   | ↑+0.79<br>↓-0.33                        | $\uparrow -0.24 \\ \downarrow +0.46$   | $\uparrow -0.53 \\ \downarrow +0.30$   | -                                      | $\uparrow -0.51 \\ \downarrow +0.91$      | $\uparrow -0.08 \\ \downarrow +0.44$   | $\uparrow -0.26 \\ \downarrow +0.01$      | $\uparrow +1.02 \\ \downarrow -1.01$   |
| Electrons Resolution                | ↑+0.07<br>↓+0.06                       | $\uparrow +0.14 \\ \downarrow +0.34$    | $\uparrow +0.24 \\ \downarrow +0.18$   | $\uparrow +0.13 \\ \downarrow +0.32$   | _                                      | $\uparrow -0.08 \\ \downarrow +0.38$      | $\uparrow -0.13 \\ \downarrow -0.08$   | $\uparrow -0.57 \\ \downarrow -0.05$      | $\uparrow -0.36 \\ \downarrow +0.34$   |
| Default Electron Trigger Eff        | ↑+0.21<br>↓-0.20                       | ↑+0.23<br>↓-0.23                        | $\uparrow +0.18$<br>$\downarrow -0.18$ | $\uparrow +0.17 \\ \downarrow -0.17$   | _                                      | $\uparrow +0.21$<br>$\downarrow -0.21$    | $\uparrow +0.19$<br>$\downarrow -0.19$ | ↑+0.20<br>↓-0.20                          | ↑+0.18<br>↓-0.18                       |
| Etmiss RES Parallel                 | $\uparrow -0.35 \\ \downarrow -0.35$   | $\uparrow -5.89$<br>$\downarrow -5.89$  | $\uparrow -0.62 \\ \downarrow -0.62$   | $\uparrow -0.53 \\ \downarrow -0.53$   | _                                      | $\uparrow -0.20 \\ \downarrow -0.20$      | $\uparrow -0.69$<br>$\downarrow -0.69$ | $\uparrow -0.77 \\ \downarrow -0.77$      | $\uparrow -0.63 \\ \downarrow -0.63$   |
| Etmiss RES Perpendicular            | $\uparrow -0.47 \\ \downarrow -0.47$   | $\uparrow -10.24 \\ \downarrow -10.24$  | $\uparrow -0.66 \\ \downarrow -0.66$   | $\uparrow +0.14 \\ \downarrow +0.14$   | -                                      | ↑-0.03<br>↓-0.03                          | ↑+0.20<br>↓+0.20                       | $\uparrow -0.56 \\ \downarrow -0.56$      | $\uparrow +0.32 \\ \downarrow +0.32$   |
| Etmiss Scale                        | $\uparrow -0.44 \\ \downarrow +0.48$   | $\uparrow -10.27 \\ \downarrow +9.46$   | $\uparrow -0.61 \\ \downarrow +0.38$   | $\uparrow +0.13 \\ \downarrow +0.34$   | -                                      | $\uparrow -0.48 \\ \downarrow +0.79$      | $\uparrow -0.23 \\ \downarrow +0.05$   | $\uparrow -0.89 \\ \downarrow +0.40$      | $\uparrow 0$<br>$\downarrow +0.34$     |
| Fat jet D2 Baseline                 | $\uparrow -2.29$<br>$\downarrow +2.34$ | $\uparrow -1.68$<br>$\downarrow +3.11$  | $\uparrow -2.22$<br>$\downarrow +2.70$ | $\uparrow -3.29$<br>$\downarrow +3.13$ | _                                      | $\uparrow -2.57$<br>+1.75                 | $\uparrow -1.93$<br>$\downarrow +2.32$ | $\uparrow -1.67$<br>$\downarrow +1.67$    | $\uparrow -2.62$<br>$\downarrow +3.22$ |
| Fat jet D2 Modelling                | ↑-3.19<br>+3.44                        | $\uparrow -2.47$<br>$\downarrow +4.70$  | $\uparrow -3.13$<br>$\downarrow +3.36$ | $\uparrow -3.40$<br>+3.29              | -                                      | ↑-3.01<br>↓+3.53                          | $\uparrow -2.66$<br>+3.49              | ↑-3.00<br>↓+2.38                          | $\uparrow -3.92$<br>$\downarrow +4.89$ |
| Fat jet D2 TotalStat                | ↑-0.27<br>+0.34                        | $\uparrow -0.05$<br>$\downarrow +0.06$  | $\uparrow -0.31$<br>$\downarrow +0.37$ | $\uparrow -1.11$<br>$\downarrow +0.22$ | -                                      | $\uparrow -0.29$<br>$\downarrow +0.29$    | $\uparrow -0.32$<br>$\downarrow +0.20$ | ↑+0.04<br>↓+0.12                          | ↑0<br>↓+0.33                           |
| Fat jet D2 Tracking                 | $\uparrow -0.41$<br>+0.44              | $\uparrow -0.34$<br>++0.64              | $\uparrow -0.53$<br>$\downarrow +0.31$ | $\uparrow -1.09$<br>$\downarrow +0.04$ | -                                      | $\uparrow -0.44$<br>$\downarrow \pm 0.35$ | $\uparrow -0.26$<br>+0.43              | $\uparrow -0.37$<br>$\downarrow \pm 0.07$ | ↑0<br>↓0                               |
| Fat jet Mass Baseline               | ↑+2.29<br>↓-2.48                       | $\uparrow +12.03$<br>$\downarrow -0.21$ | $\uparrow +1.93$<br>$\downarrow -1.85$ | $\uparrow +1.74$<br>$\downarrow -1.88$ | _                                      | $\uparrow +2.87$<br>$\downarrow -2.06$    | $\uparrow +5.01$<br>$\downarrow -2.00$ | ↑+1.81<br>↓+1.39                          | $\uparrow +1.12$<br>$\downarrow +2.90$ |
| Fat jet Mass Modelling              | ↑+1.42<br>↓-1.53                       | ↑+11.49<br>↓-0.96                       | $\uparrow +0.67$<br>$\downarrow -0.96$ | $\uparrow +2.07$<br>$\downarrow -1.26$ | _                                      | ↑+1.29<br>↓-1.83                          | ↑+1.49<br>↓-1.41                       | $\uparrow +1.47$<br>$\downarrow +0.30$    | $\uparrow -0.40$<br>+3.54              |
| Fat jet Mass TotalStat              | ↑+0.09<br>↓-0.10                       | $\uparrow +0.10$<br>$\downarrow -1.25$  | $\uparrow +0.21$<br>$\downarrow -0.19$ | $\uparrow +0.42$<br>$\downarrow -0.31$ | -                                      | ↑-0.09<br>↓-0.00                          | $\uparrow +0.27$<br>$\downarrow -0.07$ | ↑+0.08                                    | $\uparrow +0.55$<br>$\downarrow +0.68$ |
| Fat jet Mass Tracking               | ↑+0.62<br>↓-0.87                       | $\uparrow +10.71$<br>$\downarrow -0.69$ | $\uparrow +0.66$<br>$\downarrow -0.64$ | ↑+1.01<br>↓-1.55                       | -                                      | ↑+1.05<br>↓-1.00                          | $\uparrow +0.51$<br>$\downarrow -0.62$ | ↑+1.10<br>↓+0.22                          | ↑+0.04<br>↓-0.29                       |
| Fat jet pT Baseline                 | ↑+3.10<br>↓-2.94                       | ↑+3.20<br>↓-1.91                        | ↑+3.54<br>↓-3.94                       | $\uparrow +4.14 \\ \downarrow -5.29$   |                                        | ↑+1.87<br>↓-1.97                          | $\uparrow +1.50 \\ \downarrow -2.36$   | $\uparrow +2.23$<br>$\downarrow -1.77$    | $\uparrow +2.24 \\ \downarrow -0.92$   |
| Fat jet pT Modelling                | ↑+1.09<br>↓-0.85                       | ↑+3.01<br>↓-0.68                        | ↑+1.08<br>↓-1.37                       | $\uparrow +1.01 \\ \downarrow -2.16$   | _                                      | ↑+0.86<br>↓-0.60                          | $\uparrow +0.52$<br>$\downarrow -0.71$ | ↑+0.33<br>↓+0.06                          | ↑+1.90<br>↓+0.34                       |
| Fat jet pT TotalStat                | ↑+0.19<br>↓-0.22                       | ↑+0.51<br>↓-0.08                        | $\uparrow +0.25 \\ \downarrow -0.21$   | $\uparrow 0$<br>$\downarrow -1.40$     | _                                      | ↑+0.22<br>↓-0.10                          | $\uparrow +0.17$<br>$\downarrow +0.13$ | ↑+0.02<br>↓+0.05                          | ↑0<br>↓0                               |
| Fat jet pT Tracking                 | ↑+1.30<br>↓-1.20                       | $\uparrow +2.93 \\ \downarrow -0.74$    | $\uparrow +1.18 \\ \downarrow -1.46$   | $\uparrow +1.01 \\ \downarrow -2.02$   | _                                      | $\uparrow +1.04 \\ \downarrow -0.81$      | ↑+0.84<br>↓-1.00                       | ↑+0.55<br>↓-0.04                          | $\uparrow +1.90 \\ \downarrow +0.34$   |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓-0.02                           | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                                | $\uparrow 0$<br>$\downarrow -0.02$     | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Modelling                           | _                                      | $\uparrow +44.62 \\ \downarrow -27.73$  | $\uparrow +7.42 \\ \downarrow -3.92$   | _                                      |                                        | $\uparrow + 22.55 \\ \downarrow -16.33$   | $\uparrow +28.81 \\ \downarrow -20.34$ | $\uparrow +31.53 \\ \downarrow -22.14$    | _                                      |
| Default PRW                         | $\uparrow +0.47 \\ \downarrow -0.30$   | $\uparrow +5.01 \\ \downarrow -3.72$    | ↑+0.03<br>↓-0.66                       | $\uparrow +2.89 \\ \downarrow -2.46$   |                                        | $\uparrow -1.18 \\ \downarrow -0.15$      | $\uparrow -2.37 \\ \downarrow +0.35$   | $\uparrow -0.16 \\ \downarrow -1.30$      | $\uparrow -3.90 \\ \downarrow +1.54$   |
| Matrix meth. (fake rate)            | _                                      |                                         |                                        | _                                      | $\uparrow -26.59 \\ \downarrow +25.12$ |                                           |                                        | _                                         | _                                      |
| Matrix meth. (real rate)            | _                                      | _                                       | _                                      | _                                      | $\uparrow +2.53 \\ \downarrow -2.60$   | _                                         | _                                      | _                                         | _                                      |
| JES (Eta)                           | $\uparrow -0.34 \\ \downarrow +0.16$   | $\uparrow +0.93 \\ \downarrow -0.98$    | $\uparrow -0.19 \\ \downarrow -0.14$   | $\uparrow -0.11 \\ \downarrow +0.21$   |                                        | $\uparrow -0.07 \\ \downarrow +0.58$      | $\uparrow -0.10 \\ \downarrow +0.38$   | $\uparrow -0.26 \\ \downarrow +0.27$      | $\uparrow -1.03$<br>$\downarrow 0$     |
| Jets Energy Resolution              | ^++1.67<br>                            | ↑+32.23<br>-                            | ^++1.76<br>                            | ↑+0.95<br>-                            |                                        | ↑+1.60<br>-                               | ↑-0.24<br>-                            | ↑-12.07<br>-                              | ^++0.94<br>                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.34 \\ \downarrow -2.44$   | $\uparrow +13.25 \\ \downarrow -6.29$   | $\uparrow +0.21 \\ \downarrow -0.24$   | $\uparrow +3.34 \\ \downarrow -2.59$   |                                        | $\uparrow +2.99 \\ \downarrow -1.15$      | $\uparrow +0.83 \\ \downarrow -1.42$   | $\uparrow +1.85 \\ \downarrow -1.22$      | $\uparrow -0.68 \\ \downarrow +0.67$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.84 \\ \downarrow -0.94$   | $\uparrow +3.57 \\ \downarrow -5.79$    | $\uparrow +0.37 \\ \downarrow -0.75$   | $\uparrow +0.48 \\ \downarrow -0.44$   |                                        | $\uparrow +1.09 \\ \downarrow -0.74$      | $\uparrow +0.58 \\ \downarrow -0.69$   | $\uparrow +0.55 \\ \downarrow -0.15$      | $\uparrow -0.39 \\ \downarrow +0.00$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.40 \\ \downarrow -0.44$   | $\uparrow +2.53 \\ \downarrow -6.61$    | $\uparrow +0.17 \\ \downarrow -0.54$   | $\uparrow +0.13 \\ \downarrow -0.90$   | _                                      | $\uparrow +0.98 \\ \downarrow +0.08$      | $\uparrow +0.53 \\ \downarrow -0.40$   | $\uparrow -0.51 \\ \downarrow +0.62$      | $\uparrow -0.04 \\ \downarrow +0.36$   |

Таблица К.8. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR3 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 1                                         | 0)                                      | 1                                        | 1                                                          |                   |                                           |                                        | L F                                       | 1                                      |
|-------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------------------------|-------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
|                                     | >                                         | e<br>e                                  |                                          | do                                                         |                   | -                                         | 2                                      | i i                                       | _                                      |
|                                     | . e1                                      | Î Î                                     |                                          | et                                                         |                   | SOL                                       | F                                      | Î Î                                       | 300                                    |
|                                     | Ť                                         | *                                       |                                          | ngl                                                        | ke                | lbo                                       | Ť                                      | *~                                        | 0                                      |
|                                     | 7                                         | N                                       | tt                                       | si                                                         | Ъа                | D                                         | 3                                      | N N                                       | EI                                     |
| Default Electron Identification Eff | ↑+1.25<br>↓-1.24                          | $\uparrow +1.40$<br>$\downarrow -1.40$  | ↑+1.09<br>↓-1.09                         | ↑+1.14<br>↓-1.14                                           | _                 | ↑+1.29<br>↓-1.29                          | ↑+1.10<br>↓-1.10                       | $\uparrow +1.15 \\ \downarrow -1.15$      | $\uparrow +1.49 \\ \downarrow -1.49$   |
| Default Electron Isolation Eff      | ↑+0.92<br>↓-0.91                          | ↑+1.09<br>↓-1.09                        | ↑+0.68<br>↓-0.68                         | ↑+1.01<br>↓-1.01                                           | _                 | $\uparrow +1.02$<br>$\downarrow -1.02$    | $\uparrow +0.62$<br>$\downarrow -0.62$ | ↑+0.63<br>↓-0.63                          | $\uparrow +3.72 \\ \downarrow -3.72$   |
| Default Electron Reconstruction Eff | ↑+0.22<br>↓-0.21                          | $\uparrow +0.22$<br>$\downarrow -0.22$  | $\uparrow +0.21$<br>$\downarrow -0.21$   | $\uparrow +0.20$<br>$\downarrow -0.20$                     |                   | $\uparrow +0.22$<br>$\downarrow -0.22$    | $\uparrow +0.21$<br>$\downarrow -0.21$ | $\uparrow +0.22$<br>$\downarrow -0.22$    | $\uparrow +0.23$<br>$\downarrow -0.23$ |
| Electrons Scale                     | $\uparrow -0.72$<br>$\downarrow \pm 0.69$ | $\uparrow +0.79$<br>$\downarrow -0.33$  | $\uparrow -0.24$<br>+0.46                | $\uparrow -0.53$<br>$\downarrow \pm 0.30$                  |                   | $\uparrow -0.51$<br>+0.91                 | $\uparrow -0.08$<br>$\downarrow +0.44$ | $\uparrow -0.26$<br>$\downarrow \pm 0.01$ | $\uparrow +1.92$<br>$\downarrow -0.26$ |
| Electrons Resolution                | ↑+0.07<br>↓+0.06                          | $\uparrow +0.14$<br>$\downarrow +0.34$  | $\uparrow +0.24$<br>$\downarrow +0.18$   | $\uparrow +0.13$<br>$\downarrow +0.32$                     |                   | $\uparrow -0.08$<br>$\downarrow \pm 0.38$ | $\uparrow -0.13$<br>$\downarrow -0.08$ | $\uparrow -0.57$<br>$\downarrow -0.05$    | $\uparrow -0.01$<br>$\downarrow -1.82$ |
| Default Electron Trigger Eff        | ↑+0.21<br>↓-0.20                          | $\uparrow +0.23$<br>$\downarrow -0.23$  | $\uparrow +0.18$<br>$\downarrow -0.18$   | $\uparrow +0.02$<br>$\uparrow +0.17$<br>$\downarrow -0.17$ | _                 | $\uparrow +0.21$<br>$\downarrow -0.21$    | $\uparrow +0.19$<br>$\downarrow -0.19$ | $\uparrow +0.20$<br>$\downarrow -0.20$    | $\uparrow +0.19$                       |
| Etmiss RES Parallel                 | ↑-0.35                                    | ↑-5.89                                  | $\uparrow -0.62$                         | $\uparrow -0.53$                                           | _                 | $\uparrow -0.20$<br>$\downarrow -0.20$    | $\uparrow -0.69$                       | $\uparrow -0.77$<br>$\downarrow -0.77$    | $\uparrow +0.99$                       |
| Etmiss RES Perpendicular            | ↑-0.47                                    | $\uparrow -10.24$                       | ↑-0.66                                   | $\uparrow +0.14$                                           | -                 | ↑-0.03                                    | ↑+0.20                                 | $\uparrow -0.56$                          | $\uparrow +0.01$                       |
| Etmiss Scale                        | ↑-0.44                                    | $\uparrow -10.24$<br>$\uparrow -10.27$  | $\uparrow -0.61$                         | $\uparrow +0.13$                                           | -                 | $\uparrow -0.48$                          | $\uparrow -0.23$                       | $\uparrow -0.89$                          | $\uparrow +0.01$<br>$\uparrow +0.71$   |
| Fat. jet. D2 Baseline               | ↑-2.29                                    | ↑-1.68                                  | ↑-2.22                                   | ↑-3.29                                                     | -                 | $\uparrow -2.57$                          | ↑-1.93                                 | $\uparrow -1.67$                          | ↑-2.84                                 |
|                                     | $\downarrow +2.34$<br>$\uparrow -3.19$    | +3.11<br>$\uparrow -2.47$               | $\uparrow +2.70$<br>$\uparrow -3.13$     | +3.13<br>$\uparrow -3.40$                                  | -                 | $\downarrow +1.75$<br>$\uparrow -3.01$    | $\uparrow +2.32$<br>$\uparrow -2.66$   | $\downarrow +1.67$<br>$\uparrow -3.00$    | +4.51<br>$\uparrow -4.30$              |
| Fat jet D2 Modelling                | $\downarrow +3.44$                        | $\downarrow +4.70$                      | $\downarrow +3.36$                       | ↓+3.29                                                     | -                 | $\downarrow +3.53$                        | ↓+3.49                                 | $\downarrow +2.38$                        | ↓+5.97                                 |
| Fat jet D2 TotalStat                | $\downarrow +0.34$                        | ↓+0.06                                  | $\downarrow +0.31$<br>$\downarrow +0.37$ | $\downarrow +0.22$                                         | _                 | $\downarrow +0.29$<br>$\downarrow +0.29$  | $\downarrow +0.20$                     | $\downarrow +0.12$                        | 10<br>10                               |
| Fat jet D2 Tracking                 | $\uparrow -0.41$<br>+0.44                 | $\uparrow -0.34$<br>$\downarrow +0.64$  | $\uparrow -0.53$<br>$\downarrow +0.31$   | $\uparrow -1.09$<br>$\downarrow +0.04$                     | _                 | $\uparrow -0.44$<br>$\downarrow +0.35$    | $\uparrow -0.26$<br>$\downarrow +0.43$ | $\uparrow -0.37$<br>$\downarrow +0.07$    | ↑0<br>.1.0                             |
| Fat jet Mass Baseline               | ↑+2.29<br>+ 2.48                          | ↑+12.03                                 | ↑+1.93                                   | ↑+1.74                                                     | -                 | ↑+2.87                                    | ↑+5.01                                 | ↑+1.81                                    | ↑-1.47                                 |
| Fat jet Mass Modelling              | ↑+1.42<br>↓ 1.52                          | ↑+11.49                                 | ↑+0.67                                   | ↑+2.07                                                     | _                 | ↑+1.29                                    | ↑+1.49                                 | ↑+1.47                                    | $\uparrow -1.86$                       |
| Fat jet Mass TotalStat              | ↑+0.09<br>↓ 0.10                          | ↑+0.10                                  | ↑+0.21                                   | $\uparrow +0.42$                                           | _                 | ↑-0.09                                    | ↑+0.27                                 | ↑+0.08                                    | $\uparrow +0.26$                       |
| Fat jet Mass Tracking               | ↑+0.62                                    | $\uparrow +10.71$                       | $\uparrow +0.66$                         | ↑+1.01                                                     | _                 | ↑+1.05                                    | ↑+0.51                                 | ↑+1.10                                    | $\uparrow -0.58$                       |
| Fat jet pT Baseline                 | ↑+3.10                                    | ↑+3.20                                  | $\uparrow +3.54$                         | ↑+4.14<br>↓ 5.20                                           | _                 | ↑+1.87<br>↓ 1.07                          | ↑+1.50<br>↓ 2.26                       | ↑+2.23                                    | $\uparrow +1.50$<br>+ 1.50             |
| Fat jet pT Modelling                | ↑+1.09                                    | ↑+3.01                                  | ↑+1.08                                   | ↑+1.01                                                     | _                 | ↑+0.86                                    | $\uparrow +0.52$                       | $\uparrow +0.33$                          | ↑+0.12                                 |
| Fat jet pT TotalStat                | ↑+0.19                                    | ↑+0.51                                  | $\uparrow +0.25$                         | $\uparrow 0$                                               | _                 | ↑+0.22                                    | $\uparrow +0.17$<br>$\uparrow +0.17$   | ↑+0.02                                    | ↑0<br>↓0                               |
| Fat jet pT Tracking                 | ↑+1.30<br>↓ 1.20                          | ↑+2.93                                  | $\uparrow +1.18$                         | ↑+1.01<br>↓ 2.02                                           | _                 | ↑+1.04<br>↓ 0.81                          | ↑+0.84<br>↓ 1.00                       | ↑+0.55                                    | ↑+0.47                                 |
| Muons ID                            | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                 | ↑0<br>↓0                                                   | _                 | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>10                                  | ↑0<br>10                                | ↑0<br>↓ 0.00                             | ↑0<br>10                                                   | _                 | ↑0                                        | ↑0                                     | ↑0<br>10                                  | ↑0                                     |
| Muons Sagitta RES                   | ↑0<br>↓0                                  | 10<br>10                                | ↑0<br>↓0                                 | ↑0<br>10                                                   |                   | ±0<br>↑0                                  | ±0<br>↑0                               | ↑0<br>10                                  | <u>↓0</u><br>↑0                        |
| Muons Sagitta RHO                   | ↑0<br>↓0                                  | ↑0<br>↓0                                | 10<br>10                                 | ↑0<br>↓0                                                   | _                 | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓ 0.02                             | ↑0<br>↓0                                                   | _                 | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Modelling                           | - +0                                      | $\uparrow +44.62$                       | ↑+4.51                                   | - +0                                                       |                   | ↑+22.55                                   | ↑+28.81                                | ↑+31.53                                   | +0                                     |
| Default PRW                         | <br>↑+0.47                                | $\uparrow +5.01$                        | $\uparrow +0.03$                         |                                                            |                   | ↑-1.18                                    | ↑-2.37                                 | $\uparrow -0.16$                          | <br>↑+0.19                             |
| Matrix meth. (fake rate)            | -                                         | -                                       | -                                        | -                                                          | $\uparrow -26.59$ | +-0.15<br>-                               | + <u>+</u> 0.35                        | -                                         | ++0.02                                 |
| Matrix meth. (real rate)            |                                           | _                                       | _                                        | _                                                          | ↑+2.53            | _                                         | _                                      | _                                         | _                                      |
| JES (Eta)                           | $\uparrow -0.34$<br>$\downarrow \pm 0.16$ | <br>↑+0.93<br>↓-0.98                    | $\uparrow -0.19$<br>$\downarrow -0.14$   | $\uparrow -0.11$<br>$\downarrow +0.21$                     | -                 | $\uparrow -0.07$<br>$\downarrow \pm 0.58$ | $\uparrow -0.10$<br>$\downarrow +0.38$ | $\uparrow -0.26$<br>$\downarrow \pm 0.27$ | <br>↑+0.09<br>↓-0.30                   |
| Jets Energy Resolution              | ↑+1.67<br>-                               | ↑+32.23<br>-                            | ++1.76<br>−                              | ↑+0.95<br>-                                                | -                 | ↑+1.60<br>-                               | ↑-0.24                                 | ↑-12.07                                   | ++3.30<br>−                            |
| JES (In-situ analyses - N.P.1)      | ↑+2.34<br>↓-2.44                          | $\uparrow +13.25$<br>$\downarrow -6.29$ | $\uparrow +0.21$<br>$\downarrow -0.24$   | ↑+3.34<br>↓-2.59                                           |                   | ↑+2.99<br>↓-1.15                          | ↑+0.83<br>↓-1.42                       | ↑+1.85<br>↓-1.22                          | ↑-1.99<br>↓+1.78                       |
| JES (In-situ analyses - N.P.2)      | ↑+0.84<br>↓-0.94                          | ↑+3.57<br>↓-5.79                        | $\uparrow +0.37 \\ \downarrow -0.75$     | ↑+0.48<br>↓-0.44                                           |                   | $\uparrow +1.09 \\ \downarrow -0.74$      | $\uparrow +0.58$<br>$\downarrow -0.69$ | $\uparrow +0.55 \\ \downarrow -0.15$      | $\uparrow -0.85$<br>$\downarrow +1.04$ |
| JES (In-situ analyses - N.P.3)      | ↑+0.40<br>↓-0.44                          | $\uparrow +2.53 \\ \downarrow -6.61$    | $\uparrow +0.17$<br>$\downarrow -0.54$   | ↑+0.13<br>↓-0.90                                           |                   | ↑+0.98<br>↓+0.08                          | $\uparrow +0.53$<br>$\downarrow -0.40$ | $\uparrow -0.51$<br>$\downarrow +0.62$    | $\uparrow -1.11$<br>$\downarrow -0.24$ |

Таблица К.9. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR4 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 1                                      | 0)                                       |                                        |                                        |                                        |                                           |                                        | <u>۲</u>                                 |                                           |
|-------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------|
|                                     |                                        | ŭ                                        |                                        | do                                     |                                        | -                                         | 2                                      | F                                        |                                           |
|                                     | ю.                                     | T                                        |                                        | et                                     |                                        | SOL                                       | ۲.                                     | T                                        | 40(                                       |
|                                     | Î                                      | 3                                        |                                        | lgl                                    | ke                                     | poq                                       | ↑                                      | 3                                        | Ó                                         |
|                                     | M                                      | N                                        | tt                                     | Sir                                    | Fа                                     | Di                                        | M                                      | N                                        | EI                                        |
| Default Electron Identification Eff | $\uparrow +1.25 \\ \downarrow -1.24$   | $\uparrow +1.41 \\ \downarrow -1.41$     | $\uparrow +1.09 \\ \downarrow -1.09$   | $\uparrow +1.14 \\ \downarrow -1.14$   |                                        | $\uparrow +1.29 \\ \downarrow -1.29$      | $\uparrow +1.10 \\ \downarrow -1.10$   | $\uparrow +1.15 \\ \downarrow -1.15$     | $\uparrow +1.56 \\ \downarrow -1.56$      |
| Default Electron Isolation Eff      | ↑+0.92<br>↓-0.91                       | $\uparrow +1.06$                         | $\uparrow +0.68$<br>$\downarrow -0.68$ | ↑+1.01<br>↓-1.01                       | _                                      | $\uparrow +1.02$<br>$\downarrow -1.02$    | $\uparrow +0.62$<br>$\downarrow -0.62$ | $\uparrow +0.63$<br>$\downarrow -0.63$   | $\uparrow +3.43$<br>$\downarrow -3.43$    |
| Default Electron Reconstruction Eff | ↑+0.22<br>↓-0.21                       | $\uparrow +0.22 \\ \downarrow -0.22$     | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.20 \\ \downarrow -0.20$   |                                        | $\uparrow +0.22 \\ \downarrow -0.22$      | $\uparrow +0.21 \\ \downarrow -0.21$   | ↑+0.22<br>↓-0.22                         | ↑+0.23<br>↓-0.23                          |
| Electrons Scale                     | $\uparrow -0.72 \\ \downarrow +0.72$   | $\uparrow +0.52 \\ \downarrow +1.05$     | $\uparrow -0.25 \\ \downarrow +0.52$   | $\uparrow -0.53 \\ \downarrow +0.30$   |                                        | $\uparrow -0.51 \\ \downarrow +0.91$      | $\uparrow -0.08 \\ \downarrow +0.44$   | $\uparrow -0.26 \\ \downarrow +0.01$     | $\uparrow +0.02 \\ \downarrow -0.26$      |
| Electrons Resolution                | $\uparrow +0.09 \\ \downarrow +0.06$   | $\uparrow +0.65 \\ \downarrow +0.60$     | $\uparrow +0.24 \\ \downarrow +0.18$   | $\uparrow +0.13 \\ \downarrow +0.32$   |                                        | $\uparrow -0.08$<br>$\downarrow +0.38$    | $\uparrow -0.13$<br>$\downarrow -0.08$ | $\uparrow -0.57$<br>$\downarrow -0.05$   | $\uparrow 0$<br>$\downarrow -0.95$        |
| Default Electron Trigger Eff        | ↑+0.21<br>↓-0.20                       | $\uparrow +0.24$                         | $\uparrow +0.18$                       | $\uparrow +0.17$                       | _                                      | $\uparrow +0.21$                          | ↑+0.19<br>↓-0.19                       | $\uparrow +0.20$                         | $\uparrow +0.21$                          |
| Etmiss RES Parallel                 | ↑-0.33<br>↓-0.33                       | $\uparrow -6.42$<br>$\downarrow -6.42$   | $\uparrow -0.66$                       | $\uparrow -0.43$<br>$\downarrow -0.43$ | _                                      | $\uparrow -0.15$<br>$\downarrow -0.15$    | $\uparrow -0.69$                       | $\uparrow -0.77$<br>$\downarrow -0.77$   | $\uparrow +0.00$<br>$\downarrow +0.00$    |
| Etmiss RES Perpendicular            | ↑-0.44<br>↓-0.44                       | ↑-9.95<br>↓-9.95                         | $\uparrow -0.65$<br>$\downarrow -0.65$ | ↑+0.14<br>↓+0.14                       | _                                      | $\uparrow -0.02$<br>$\downarrow -0.02$    | ↑+0.20<br>↓+0.20                       | $\uparrow -0.56$<br>$\downarrow -0.56$   | 0↑<br>↓0                                  |
| Etmiss Scale                        | $\uparrow -0.41 \\ \downarrow +0.47$   | $\uparrow -10.74 \\ \downarrow +10.56$   | $\uparrow -0.61 \\ \downarrow +0.37$   | $\uparrow +0.13 \\ \downarrow +0.34$   | _                                      | $\uparrow -0.46 \\ \downarrow +0.79$      | $\uparrow -0.23 \\ \downarrow +0.05$   | $\uparrow -0.89 \\ \downarrow +0.39$     | $\uparrow 0$<br>$\downarrow +0.25$        |
| Fat jet D2 Baseline                 | $\uparrow -2.29$<br>+2.34              | $\uparrow -1.48$<br>+3.05                | $\uparrow -2.19$<br>+2.70              | $\uparrow -3.30$<br>+3.14              | _                                      | $\uparrow -2.58$<br>$\downarrow \pm 1.76$ | $\uparrow -1.93$<br>+2.32              | $\uparrow -1.67$<br>+ 1.65               | $\uparrow -2.80$<br>+2.73                 |
| Fat jet D2 Modelling                | ↑-3.20                                 | ↑-1.89                                   | $\uparrow -3.12$                       | ↑-3.41                                 | -                                      | ↑-3.02                                    | ↑-2.66                                 | ↑-3.00                                   | $\uparrow -3.76$                          |
| Fat jet D2 TotalStat                | ↑-0.27                                 | ↑-0.03                                   | ↑-0.31                                 | ↑-1.11                                 | _                                      | ↑-0.29                                    | ↑-0.32                                 | ↑+0.04                                   | ↑-1.59                                    |
| Fat jet D2 Tracking                 | 1 +0.34                                | 1 1 0.08                                 | $\uparrow -0.53$                       | $\uparrow +0.22$<br>$\uparrow -1.10$   | -                                      | 1+0.29                                    | $\uparrow -0.26$                       | $\uparrow -0.37$                         | $\uparrow +0.34$<br>$\uparrow -1.56$      |
| Fat jet Mass Baseline               | $\uparrow +0.44$<br>$\uparrow +2.29$   | $\uparrow +0.35$<br>$\uparrow +16.65$    | $\uparrow +0.31$<br>$\uparrow +2.10$   | $\uparrow +0.04$<br>$\uparrow +1.75$   | -                                      | $\uparrow +0.35$<br>$\uparrow +2.86$      | $\uparrow +0.43$<br>$\uparrow +5.02$   | $\uparrow +0.05$<br>$\uparrow +1.80$     | $\uparrow +0.44$<br>$\uparrow +1.46$      |
| Fat jet Mass Modelling              | $\uparrow +1.42$                       | $\downarrow -2.89$<br>$\uparrow +15.47$  | $\uparrow +0.87$                       | $\uparrow +2.08$                       | -                                      | $\downarrow -2.11$<br>$\uparrow +1.27$    | $\uparrow -1.99 \\ \uparrow +1.50$     | $\uparrow +1.39$<br>$\uparrow +1.47$     | +4.63<br>+2.40                            |
| Fat jet Mass Modelling              | $\downarrow -1.53$<br>$\uparrow +0.09$ | $\downarrow -3.50$<br>$\uparrow +0.15$   | $\downarrow -0.94$<br>$\uparrow +0.21$ | $\downarrow -1.26$<br>$\uparrow +0.42$ | -                                      | $\downarrow -1.84$<br>$\uparrow -0.09$    | $\downarrow -1.40$<br>$\uparrow +0.27$ | $\downarrow +0.31$<br>$\uparrow +0.08$   | $\downarrow +3.69$<br>$\uparrow +0.21$    |
|                                     | $\downarrow -0.10$<br>$\uparrow +0.61$ | $\downarrow -1.51$<br>$\uparrow +14.31$  | $\downarrow -0.19$<br>$\uparrow +0.82$ | $\downarrow -0.31$<br>$\uparrow +1.01$ | -                                      | $\downarrow -0.00$<br>$\uparrow +1.03$    | $\downarrow -0.07$<br>$\uparrow +0.51$ | $\downarrow -0.01$<br>$\uparrow +1.10$   | $\downarrow +0.03$<br>$\uparrow +1.86$    |
| Fat jet Mass Tracking               | $\downarrow -0.87$<br>$\uparrow +3.10$ | $\downarrow -1.65$<br>$\uparrow +3.76$   | $\downarrow -0.63$<br>$\uparrow +3.55$ | $\downarrow -1.56$<br>$\uparrow +4.16$ | _                                      | $\downarrow -1.00$<br>$\uparrow +1.86$    | $\downarrow -0.62$<br>$\uparrow +1.49$ | $\downarrow +0.22$<br>$\uparrow +2.22$   | $\downarrow +2.17$<br>$\uparrow +2.89$    |
| Fat jet pT Baseline                 | $\downarrow -2.95$                     | $\downarrow -2.43$                       | $\downarrow -3.94$                     | $\downarrow -5.29$                     | _                                      | ↓-1.98                                    | $\downarrow -2.36$                     | $\downarrow -1.77$                       | $\downarrow -3.83$                        |
| Fat jet pT Modelling                | $\downarrow -0.85$                     | $\downarrow -0.65$                       | $\downarrow -1.40$                     | $\downarrow -2.17$                     | _                                      | $\downarrow -0.61$                        | $\downarrow -0.72$                     | $\downarrow +0.06$                       | $\downarrow -1.18$                        |
| Fat jet pT TotalStat                | $\uparrow +0.19 \\ \downarrow -0.22$   | $\uparrow +0.64 \\ \downarrow -0.10$     | $\uparrow +0.25 \\ \downarrow -0.21$   | $\uparrow 0$<br>$\downarrow -1.41$     | _                                      | $\uparrow +0.22 \\ \downarrow -0.10$      | $\uparrow +0.17 \\ \downarrow +0.13$   | $\uparrow +0.02 \\ \downarrow +0.05$     | $\uparrow 0$<br>$\downarrow +0.03$        |
| Fat jet pT Tracking                 | $\uparrow +1.30 \\ \downarrow -1.20$   | $\uparrow +3.57 \\ \downarrow -0.80$     | $\uparrow +1.18 \\ \downarrow -1.47$   | $\uparrow +1.01 \\ \downarrow -2.03$   | _                                      | $\uparrow +1.04 \\ \downarrow -0.82$      | $\uparrow +0.84 \\ \downarrow -1.00$   | $\uparrow +0.53 \\ \downarrow -0.04$     | $\uparrow +1.66 \\ \downarrow -1.57$      |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$         | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow 0$            |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow -0.02$     | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                  |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>⊥0                                 | ↑0<br>↓0                               | ↑0<br>⊥0                               | _                                      | 0<br>_⊥0                                  | ↑0<br>⊥0                               | ↑0<br>↓0                                 | ^0<br>↓0                                  |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>.1.0                             | _                                      | ↑0<br>↓0                                  | ↑0<br>1.0                              | ↑0<br>↓0                                 | ↑0<br>↓0                                  |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow -0.02$     | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                  |
| Modelling                           | -                                      | $\uparrow +45.48$<br>$\downarrow -28.10$ | $\uparrow +2.15$<br>$\downarrow -3.02$ | -                                      | _                                      | ↑+22.51<br>↓-16.31                        | $\uparrow +28.79$                      | $\uparrow +31.52$<br>$\downarrow -22.13$ | -                                         |
| Default PRW                         | ↑+0.50<br>↓-0.30                       | $\uparrow +4.29$<br>$\downarrow -2.72$   | $\uparrow +0.11$<br>$\downarrow -0.62$ | ↑+2.95<br>↓-2.52                       |                                        | $\uparrow -1.17$<br>$\downarrow -0.13$    | ↑-2.37<br>↓+0.35                       | $\uparrow -0.16$                         | $\uparrow -2.27$<br>$\downarrow \pm 1.35$ |
| Matrix meth. (fake rate)            | _                                      | -                                        |                                        |                                        | $\uparrow -26.44 \\ \downarrow +24.93$ | -                                         | -                                      |                                          |                                           |
| Matrix meth. (real rate)            | _                                      | -                                        | _                                      | _                                      | $\uparrow +2.60 \\ \downarrow -2.66$   | _                                         | _                                      | -                                        | _                                         |
| JES (Eta)                           | $\uparrow -0.34 \\ \downarrow +0.15$   | $\uparrow +2.59 \\ \downarrow -1.71$     | $\uparrow -0.19 \\ \downarrow -0.12$   | $\uparrow -0.12 \\ \downarrow +0.22$   |                                        | $\uparrow -0.07 \\ \downarrow +0.51$      | $\uparrow -0.10 \\ \downarrow +0.37$   | $\uparrow -0.26 \\ \downarrow +0.27$     | $\uparrow 0$<br>$\downarrow 0$            |
| Jets Energy Resolution              | ^++1.64<br>_                           |                                          | ↑+1.75<br>-                            | ↑+0.95<br>-                            |                                        | ^+1.51<br>-                               | ↑-0.24<br>-                            | ↑-12.21<br>-                             | ^++0.38<br>_                              |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.32 \\ \downarrow -2.40$   | $\uparrow +17.94 \\ \downarrow -5.23$    | $\uparrow +0.22 \\ \downarrow -0.27$   | $\uparrow +3.38 \\ \downarrow -2.58$   |                                        | $\uparrow +3.03 \\ \downarrow -1.23$      | $\uparrow +0.77 \\ \downarrow -1.47$   | $\uparrow +1.84 \\ \downarrow -1.22$     | $\uparrow -0.12 \\ \downarrow -1.00$      |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.87 \\ \downarrow -0.94$   | $\uparrow +6.41 \\ \downarrow -7.44$     | $\uparrow +0.38 \\ \downarrow -0.76$   | $\uparrow +0.48 \\ \downarrow -0.45$   | _                                      | $\uparrow +1.09 \\ \downarrow -0.68$      | $\uparrow +0.58 \\ \downarrow -0.69$   | $\uparrow +0.55 \\ \downarrow -0.15$     | $\uparrow +0.04 \\ \downarrow +0.21$      |
| JES (In-situ analyses - N.P.3)      | $\uparrow + 0.40 \\ \downarrow - 0.41$ | $\uparrow +5.15 \\ \downarrow -6.59$     | $\uparrow +0.19 \\ \downarrow -0.56$   | $\uparrow +0.13 \\ \downarrow -0.90$   |                                        | $\uparrow +0.99 \\ \downarrow +0.01$      | $\uparrow +0.47 \\ \downarrow -0.40$   | $\uparrow -0.52 \\ \downarrow +0.62$     | $\uparrow + 0.04$<br>$\downarrow 0$       |

Таблица К.10. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR5 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | → ev                                   | $\gamma * \rightarrow ee$              |                                        | ngle top                               | ke                                     | poson                                      | ↓ <i>τν</i>                            | $\gamma * \rightarrow \tau 	au$           | 0500                                   |
|-------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
|                                     | М                                      | Ż                                      | tt                                     | Sin                                    | Fa                                     | Di                                         | М                                      | Ż                                         | EI                                     |
| Default Electron Identification Eff | $\uparrow +1.25 \\ \downarrow -1.24$   | $\uparrow +1.37 \\ \downarrow -1.37$   | $\uparrow +1.09 \\ \downarrow -1.09$   | $\uparrow +1.14 \\ \downarrow -1.14$   | -                                      | $\uparrow +1.29 \\ \downarrow -1.29$       | $\uparrow +1.10 \\ \downarrow -1.10$   | $\uparrow +1.15 \\ \downarrow -1.15$      | $\uparrow +1.55 \\ \downarrow -1.55$   |
| Default Electron Isolation Eff      | $\uparrow +0.92 \\ \downarrow -0.91$   | ↑+0.96<br>↓-0.96                       | $\uparrow +0.68$<br>$\downarrow -0.68$ | $\uparrow +1.01 \\ \downarrow -1.01$   |                                        | $\uparrow +1.02 \\ \downarrow -1.02$       | $\uparrow +0.62$<br>$\downarrow -0.62$ | $\uparrow +0.63$<br>$\downarrow -0.63$    | $\uparrow +3.51 \\ \downarrow -3.51$   |
| Default Electron Reconstruction Eff | ↑+0.22<br>↓-0.21                       | ↑+0.23<br>↓-0.23                       | $\uparrow +0.21$<br>$\downarrow -0.21$ | $\uparrow +0.20 \\ \downarrow -0.20$   | _                                      | $\uparrow +0.22$<br>$\downarrow -0.22$     | $\uparrow +0.21$<br>$\downarrow -0.21$ | ↑+0.22<br>↓-0.22                          | $\uparrow +0.20$<br>$\downarrow -0.20$ |
| Electrons Scale                     | $\uparrow -0.71$<br>$\downarrow +0.72$ | $\uparrow -0.89$<br>$\downarrow +2.98$ | $\uparrow -0.20$<br>$\downarrow +0.49$ | $\uparrow -0.42$<br>$\downarrow +0.31$ | _                                      | $\uparrow -0.66$<br>$\downarrow +0.90$     | $\uparrow -0.07$<br>$\downarrow +0.41$ | $\uparrow -0.25$<br>$\downarrow +0.00$    | $\uparrow -0.19$<br>$\downarrow +0.58$ |
| Electrons Resolution                | ↑+0.12<br>+0.04                        | $\uparrow +1.10$<br>$\downarrow +0.69$ | $\uparrow +0.19$<br>++0.16             | $\uparrow +0.13$<br>+0.44              | _                                      | $\uparrow -0.19$<br>+0.42                  | $\uparrow -0.11$                       | $\uparrow -0.57$<br>$\downarrow -0.04$    | ↑0<br>↓+0.28                           |
| Default Electron Trigger Eff        | ↑+0.21<br>↓-0.20                       | $\uparrow +0.24$<br>$\downarrow -0.24$ | $\uparrow +0.18$<br>$\downarrow -0.18$ | $\uparrow +0.17$<br>$\downarrow -0.17$ | _                                      | $\uparrow +0.21$<br>$\downarrow -0.21$     | $\uparrow +0.19$                       | ↑+0.20<br>↓-0.20                          | $\uparrow +0.17$<br>$\downarrow -0.17$ |
| Etmiss RES Parallel                 | ↑-0.34<br>↓-0.34                       | $\uparrow -5.52$<br>$\downarrow -5.52$ | $\uparrow -0.73$<br>$\downarrow -0.73$ | $\uparrow -0.37$<br>$\downarrow -0.37$ | -                                      | $\uparrow -0.47$<br>$\downarrow -0.47$     | $\uparrow -0.58$<br>$\downarrow -0.58$ | $\uparrow -0.78$                          | ↑0<br>↓0                               |
| Etmiss RES Perpendicular            | $\uparrow -0.46$                       | ↑-7.98                                 | $\uparrow -0.53$<br>$\downarrow -0.53$ | $\uparrow +0.15$<br>++0.15             | _                                      | $\uparrow +0.14$<br>+0.14                  | $\uparrow +0.05$<br>$\downarrow +0.05$ | $\uparrow -0.52$<br>$\downarrow -0.52$    | $\uparrow -0.20$<br>$\downarrow -0.20$ |
| Etmiss Scale                        | ↑-0.42<br>↓±0.38                       | $\uparrow -8.45$                       | $\uparrow -0.55$                       | $\uparrow +0.13$<br>$\downarrow +0.33$ | _                                      | $\uparrow -0.47$                           | $\uparrow -0.33$                       | $\uparrow -0.87$<br>$\downarrow \pm 0.38$ | ↑0<br>↓0                               |
| Fat jet D2 Baseline                 | ↑-2.29<br>↓±2.31                       | ↑-1.91                                 | $\uparrow -2.20$                       | $\uparrow -2.99$                       | _                                      | $\uparrow -2.58$<br>$\downarrow \pm 1.74$  | $\uparrow -1.82$                       | $\uparrow -1.65$<br>$\downarrow \pm 1.63$ | $\uparrow -3.21$                       |
| Fat jet D2 Modelling                | ↑-3.21<br>↓ 2.42                       | $\uparrow -2.40$                       | $\uparrow -3.15$                       | $\uparrow -3.33$                       | -                                      | ↑-3.03                                     | ↑-2.55                                 | ↑-2.99                                    | $\uparrow -6.34$                       |
| Fat jet D2 TotalStat                | ↑-0.27                                 | ↑-0.04                                 | ↑-0.32                                 | $\uparrow -1.13$                       | -                                      | $\uparrow -0.29$                           | $\uparrow -0.32$                       | ↑+0.04<br>↓↓0.00                          | $\uparrow 0$                           |
| Fat jet D2 Tracking                 | ↑-0.41                                 | $\uparrow -0.40$                       | $\uparrow -0.54$                       | $\uparrow -0.98$                       | -                                      | $\uparrow -0.44$                           | $\uparrow -0.26$                       | $\uparrow -0.37$                          | $\uparrow 0$                           |
| Fat jet Mass Baseline               | ↑+2.24<br>↓ 2.45                       | $\uparrow +21.27$                      | ↑+2.14<br>↓ 1.88                       | ↑+1.38<br>↓ 1.75                       | -                                      | ↑+2.91<br>↓ 2.82                           | $\uparrow +4.66$                       | ↑+1.74<br>↓↓1.28                          | $\uparrow -0.07$                       |
| Fat jet Mass Modelling              | ↑+1.39<br>↓ 1.57                       | ↑+19.69                                | ↑+0.84                                 | ↑+2.01<br>↓ 1.28                       | _                                      | ↑+1.24<br>↓ 1.07                           | ↑+1.50<br>↑+1.28                       | ↑+1.43                                    | $\uparrow +0.08$                       |
| Fat jet Mass TotalStat              | $\uparrow +0.08$                       | $\uparrow +0.23$<br>$\downarrow -2.01$ | $\uparrow +0.22$<br>$\downarrow -0.21$ | $\uparrow +0.42$                       | _                                      | $\uparrow -0.10$                           | $\uparrow +0.27$<br>$\downarrow -0.07$ | ↑+0.08                                    | $\uparrow -0.02$                       |
| Fat jet Mass Tracking               | ↑+0.59<br>↓-0.89                       | ↑+18.34<br>↓-1.69                      | $\uparrow +0.85$<br>$\downarrow -0.68$ | $\uparrow +0.93$<br>$\downarrow -1.58$ | -                                      | $\uparrow +1.00$<br>$\downarrow -1.14$     | $\uparrow +0.53$<br>$\downarrow -0.60$ | $\uparrow +1.05$<br>$\downarrow +0.20$    | $\uparrow +0.32$<br>$\downarrow -1.28$ |
| Fat jet pT Baseline                 | $\uparrow +3.02$<br>$\downarrow -3.02$ | ↑+3.98<br>↓-2.55                       | $\uparrow +3.74$<br>$\downarrow -3.96$ | $\uparrow +4.18$<br>$\downarrow -5.24$ | -                                      | $\uparrow +1.83$<br>$\downarrow -1.86$     | $\uparrow +1.89$<br>$\downarrow -2.25$ | ↑+2.23<br>↓-1.77                          | $\uparrow +0.52$<br>$\downarrow -0.41$ |
| Fat jet pT Modelling                | ↑+1.02<br>↓-0.86                       | ↑+3.70<br>↓-1.03                       | $\uparrow +1.09$<br>$\downarrow -1.46$ | $\uparrow +1.02$<br>$\downarrow -2.07$ |                                        | $\uparrow +0.78$<br>$\downarrow -0.60$     | $\uparrow +0.56$<br>$\downarrow -0.53$ | ↑+0.30<br>↓+0.06                          | $\uparrow +0.67$<br>$\downarrow -0.21$ |
| Fat jet pT TotalStat                | ↑+0.18<br>↓-0.21                       | $\uparrow +0.09$<br>$\downarrow -0.14$ | $\uparrow +0.22$<br>$\downarrow -0.22$ | $\uparrow 0$<br>$\downarrow -1.43$     |                                        | $\uparrow +0.22$<br>$\downarrow -0.10$     | $\uparrow +0.17$<br>$\downarrow +0.13$ | $\uparrow +0.02$<br>$\downarrow +0.05$    | $\uparrow +0.67$                       |
| Fat jet pT Tracking                 | ↑+1.22<br>↓-1.24                       | ↑+3.57<br>↓-1.08                       | ↑+1.19<br>↓-1.53                       | $\uparrow +1.02$<br>$\downarrow -2.02$ |                                        | ↑+0.95<br>↓-0.83                           | ↑+0.88<br>↓-0.82                       | $\uparrow +0.52$<br>$\downarrow -0.04$    | ↑+0.67<br>↓-0.59                       |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                   | ↑0<br>.1.0                             | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓-0.02                           | ↑0<br>.1.0                             |                                        | ↑0<br>.1.0                                 | ↑0<br>.1.0                             | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>⊥0                               | _                                      | ↑0<br>⊥0                                   | ↑0<br>⊥0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>⊥0                               | _                                      | ↑0<br>⊥0                                   | ↑0<br>⊥0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓-0.02                           | ↑0<br>⊥0                               | _                                      | ↑0<br>⊥0                                   | ↑0<br>⊥0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Modelling                           | _                                      | $\uparrow +46.91 \\ \downarrow -28.52$ | $\uparrow +4.81$<br>$\downarrow -6.22$ | _                                      | _                                      | $\uparrow + 22.48$<br>$\downarrow - 16.29$ | $\uparrow +28.74 \\ \downarrow -20.31$ | $\uparrow +31.46 \\ \downarrow -22.11$    | _                                      |
| Default PRW                         | $\uparrow +0.44 \\ \downarrow -0.27$   | $\uparrow -0.41 \\ \downarrow -0.25$   | $\uparrow +0.04 \\ \downarrow -0.54$   | $\uparrow +3.06 \\ \downarrow -2.50$   | _                                      | $\uparrow -1.20 \\ \downarrow -0.09$       | $\uparrow -2.36 \\ \downarrow +0.34$   | $\uparrow -0.15 \\ \downarrow -1.29$      | $\uparrow +1.23 \\ \downarrow -6.20$   |
| Matrix meth. (fake rate)            | _                                      |                                        | _                                      | _                                      | $\uparrow -26.29 \\ \downarrow +24.72$ | -                                          | _                                      | _                                         | _                                      |
| Matrix meth. (real rate)            | _                                      | -                                      | _                                      | _                                      | $\uparrow +2.67 \\ \downarrow -2.74$   | -                                          |                                        | -                                         | _                                      |
| JES (Eta)                           | $\uparrow -0.27 \\ \downarrow +0.16$   | $\uparrow +3.31 \\ \downarrow -2.99$   | $\uparrow -0.08 \\ \downarrow -0.20$   | $\uparrow -0.10 \\ \downarrow +0.34$   |                                        | $\uparrow -0.03 \\ \downarrow +0.35$       | $\uparrow -0.09 \\ \downarrow +0.37$   | $\uparrow -0.25 \\ \downarrow +0.31$      | $\uparrow -0.20$<br>$\downarrow 0$     |
| Jets Energy Resolution              | ^+1.54<br>                             |                                        | ^++1.47<br>                            | ↑+0.20<br>-                            |                                        | ↑+0.66<br>-                                | ↑-0.13<br>-                            | ↑-12.03<br>-                              | ++1.44<br>-                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.21 \\ \downarrow -2.34$   | $\uparrow +18.57 \\ \downarrow -7.75$  | $\uparrow +0.17 \\ \downarrow -0.38$   | $\uparrow +2.45 \\ \downarrow -2.73$   | _                                      | $\uparrow +3.20 \\ \downarrow -1.56$       | $\uparrow +0.87 \\ \downarrow -1.49$   | $\uparrow +1.84 \\ \downarrow -1.23$      | $\uparrow +1.02 \\ \downarrow -0.06$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.83 \\ \downarrow -0.95$   | $\uparrow +7.66 \\ \downarrow -7.47$   | $\uparrow +0.41 \\ \downarrow -0.80$   | $\uparrow +0.72 \\ \downarrow -0.44$   | _                                      | $\uparrow +1.13 \\ \downarrow -0.95$       | $\uparrow +0.58 \\ \downarrow -0.68$   | $\uparrow +0.56 \\ \downarrow -0.13$      | $\uparrow +1.03 \\ \downarrow -0.00$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.43 \\ \downarrow -0.38$   | $\uparrow +4.41 \\ \downarrow -5.10$   | $\uparrow +0.25 \\ \downarrow -0.54$   | $\uparrow +0.24 \\ \downarrow -0.80$   |                                        | $\uparrow +0.86 \\ \downarrow -0.13$       | $\uparrow +0.42 \\ \downarrow -0.39$   | $\uparrow -0.56 \\ \downarrow +0.63$      | $\uparrow +0.00 \\ \downarrow +0.16$   |

Таблица К.11. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR6 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     |                                           | 0)                                         | 1                                         | 1                                        |                                        |                                           |                                        | L F                                       | 1                                      |
|-------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
|                                     | 2                                         | e<br>e                                     |                                           | do                                       |                                        | -                                         | 2                                      | i i                                       | _                                      |
|                                     | e ei                                      | T T                                        |                                           | et                                       |                                        | los                                       | F A                                    | T T                                       | 600                                    |
|                                     | T                                         | *λ/                                        |                                           | ngl                                      | lke                                    | ibo                                       | T                                      | 3*                                        | 2                                      |
|                                     | 4                                         | Ň                                          | tt                                        | is.                                      | ц.                                     | D                                         | 1                                      | Ň                                         | 臣                                      |
| Default Electron Identification Eff | $\uparrow +1.26 \\ \downarrow -1.26$      | $\uparrow +1.32 \\ \downarrow -1.31$       | $\uparrow +1.10 \\ \downarrow -1.10$      | $\uparrow +1.15 \\ \downarrow -1.15$     |                                        | $\uparrow +1.29 \\ \downarrow -1.29$      | $\uparrow +1.11 \\ \downarrow -1.10$   | $\uparrow +1.19 \\ \downarrow -1.19$      | $\uparrow +1.56 \\ \downarrow -1.56$   |
| Default Electron Isolation Eff      | $\uparrow +0.98$<br>$\downarrow -0.97$    | $\uparrow +0.97$<br>$\downarrow -0.97$     | $\uparrow +0.76 \\ \downarrow -0.76$      | ↑+1.10<br>↓-1.10                         | _                                      | $\uparrow +1.13 \\ \downarrow -1.12$      | ↑+0.66<br>↓-0.66                       | $\uparrow +0.71$<br>$\downarrow -0.71$    | $\uparrow +3.17 \\ \downarrow -3.17$   |
| Default Electron Reconstruction Eff | ↑+0.22<br>↓-0.21                          | ↑+0.23<br>↓-0.23                           | $\uparrow +0.21$<br>$\downarrow -0.21$    | ↑+0.20<br>↓-0.20                         | _                                      | $\uparrow +0.22 \\ \downarrow -0.22$      | $\uparrow +0.21$<br>$\downarrow -0.21$ | ↑+0.22<br>↓-0.22                          | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | $\uparrow -0.53$<br>$\downarrow +0.83$    | $\uparrow -3.02$<br>+4.87                  | $\uparrow -0.20$<br>+0.46                 | $\uparrow -0.62$<br>+0.16                | _                                      | $\uparrow -0.25$<br>+0.74                 | $\uparrow +0.17$<br>++0.07             | $\uparrow -0.19$<br>$\downarrow +0.42$    | $\uparrow -0.56$<br>$\downarrow +1.00$ |
| Electrons Resolution                | ↑+0.11<br>↓+0.14                          | $\uparrow -0.24$<br>+1.50                  | ↑+0.18<br>↓-0.01                          | $\uparrow -0.10$<br>$\downarrow -0.12$   | _                                      | $\uparrow +0.01$<br>+0.30                 | $\uparrow -0.05$                       | $\uparrow -0.41$<br>$\downarrow -0.06$    | $\uparrow -0.08$<br>$\downarrow +0.04$ |
| Default Electron Trigger Eff        | $\uparrow +0.21$<br>$\downarrow -0.21$    | $\uparrow +0.23$<br>$\downarrow -0.23$     | $\uparrow +0.18$<br>$\downarrow -0.18$    | $\uparrow +0.17$<br>$\downarrow -0.17$   | _                                      | ↑+0.20<br>↓-0.20                          | ↑+0.19<br>↓-0.19                       | ↑+0.21<br>↓-0.21                          | $\uparrow +0.20$<br>$\downarrow -0.20$ |
| Etmiss RES Parallel                 | $\uparrow -0.34$<br>$\downarrow -0.34$    | ↑-3.34<br>↓-3.34                           | $\uparrow -0.17$<br>$\downarrow -0.17$    | $\uparrow -0.57$<br>$\downarrow -0.57$   | _                                      | $\uparrow -0.30$<br>$\downarrow -0.30$    | $\uparrow -0.29$<br>$\downarrow -0.29$ | $\uparrow -0.07$<br>$\downarrow -0.07$    | ↑0<br>10                               |
| Etmiss RES Perpendicular            | $\uparrow -0.19$                          | $\uparrow -6.89$                           | $\uparrow -0.49$                          | $\uparrow -0.53$                         | _                                      | $\uparrow -0.58$                          | $\uparrow -0.25$                       | $\uparrow -0.51$<br>$\downarrow -0.51$    | $\uparrow -0.01$                       |
| Etmiss Scale                        | $\uparrow -0.22$<br>$\downarrow \pm 0.33$ | $\uparrow -6.89$                           | $\uparrow -0.20$<br>$\downarrow \pm 0.59$ | $\uparrow -0.45$                         | _                                      | $\uparrow -0.25$<br>$\downarrow \pm 0.20$ | $\uparrow -0.07$                       | $\uparrow -0.02$<br>$\downarrow \pm 0.23$ | $\uparrow 0$<br>$\downarrow \pm 0.23$  |
| Fat jet D2 Baseline                 | $\uparrow -2.40$                          | $\uparrow -1.92$                           | $\uparrow -2.53$                          | $\uparrow -1.65$                         | -                                      | ↑-2.90                                    | $\uparrow -1.72$                       | 1 1 − 2.05                                | ↑-4.37                                 |
| Est ist D2 Madalling                | $\uparrow +2.45$<br>$\uparrow -3.40$      | $\uparrow +5.32$<br>$\uparrow -2.79$       | $\uparrow +3.03$<br>$\uparrow -3.89$      | $\uparrow +2.46$<br>$\uparrow -2.93$     | -                                      | $\uparrow +1.71$<br>$\uparrow -3.50$      | $\uparrow +3.00$<br>$\uparrow -2.64$   | $\downarrow +1.85$<br>$\uparrow -3.51$    | $\uparrow +4.88$<br>$\uparrow -5.85$   |
| Fat jet D2 Modelling                | $\downarrow +3.67$                        | +6.30                                      | $\downarrow +3.95$                        | $\downarrow +2.74$                       |                                        | $\downarrow +3.09$                        | $\downarrow +4.08$                     | $\downarrow +2.36$                        | $\downarrow +7.53$                     |
| Fat jet D2 TotalStat                | $\downarrow +0.30$                        | ↓+0.16                                     | $\downarrow +0.40$                        | $\downarrow +0.15$<br>$\downarrow +0.15$ | _                                      | $\downarrow +0.29$                        | $\downarrow +0.22$                     | $\downarrow +0.17$                        | $\downarrow +1.14$                     |
| Fat jet D2 Tracking                 | $\uparrow -0.42$<br>$\downarrow +0.42$    | $\uparrow -0.40$<br>$\downarrow +0.65$     | $\uparrow -0.63$<br>$\downarrow +0.40$    | $\uparrow +0.05 \\ \downarrow +0.06$     | _                                      | $\uparrow -0.52 \\ \downarrow +0.34$      | $\uparrow -0.28 \\ \downarrow +0.47$   | $\uparrow -0.35$<br>$\downarrow +0.09$    | $\uparrow -0.41$<br>$\downarrow +1.39$ |
| Fat jet Mass Baseline               | ↑+2.00                                    | ↑+2.76                                     | ↑+2.20                                    | ↑+2.48<br>1 2.08                         | -                                      | ↑+0.95                                    | ↑+5.46                                 | ↑+1.63                                    | ↑-1.66                                 |
| Fat jet Mass Modelling              | ↑+1.09                                    | ↑+0.68                                     | ↑+1.42                                    | ↑+2.00                                   |                                        | ↑+0.92                                    | ↑+1.72                                 | +1.69                                     | $\uparrow + 0.11$                      |
| Fat jet Mass TotalStat              | ↓-1.13<br>↑+0.11                          | $\uparrow +0.02$                           | ↓ <u>+0.96</u><br>↑+0.11                  | ↓-1.01<br>↑+0.66                         | -                                      | ↓-2.68<br>↑+0.07                          | $\uparrow +0.15$                       | +0.23                                     | $\uparrow +2.22$<br>$\uparrow -0.25$   |
| Fat jet Mass Tracking               | $\uparrow +0.08$<br>$\uparrow +0.45$      | $\uparrow -0.04$<br>$\uparrow -0.51$       | $\uparrow +1.07$                          | $\uparrow +0.29$<br>$\uparrow +0.96$     | _                                      | $\uparrow +0.17$<br>$\uparrow +0.66$      | $\uparrow +0.11$<br>$\uparrow +0.88$   | $\uparrow -0.19$<br>$\uparrow +1.36$      | $\uparrow -0.02$<br>$\uparrow -0.34$   |
| Fat jet pT Baseline                 | 1 +3.31                                   | ↓ <u>+0.92</u><br>↑+2.86                   | ↓-0.50<br>↑+4.25                          | 1.29                                     | -                                      | ↓-1.83<br>↑+1.33                          | 1 +3.41                                | $\uparrow + 0.21$<br>$\uparrow + 3.25$    | ↓+0.88<br>↑+2.98                       |
| Fat jet pT Modelling                | $\uparrow -2.69$<br>$\uparrow +1.11$      | $\downarrow -2.11$<br>$\uparrow +2.22$     | $\downarrow -3.98$<br>$\uparrow +1.57$    | $\downarrow -2.95$<br>$\uparrow +0.94$   | -                                      | $\downarrow -2.15$<br>$\uparrow +0.44$    | $\uparrow +0.95$                       | 1-2.88<br>$\uparrow +0.77$                | $\uparrow -2.25$<br>$\uparrow +1.34$   |
| Fat jet pT TotalStat                | $\downarrow -0.87$<br>$\uparrow +0.12$    | $\downarrow -0.37$<br>$\uparrow +0.11$     | $\downarrow -1.66$<br>$\uparrow +0.23$    | $\uparrow 0$                             | -                                      | $\downarrow -0.73$<br>$\uparrow +0.23$    | $\downarrow -0.67$<br>$\uparrow +0.06$ | $\downarrow -0.87$<br>$\uparrow +0.16$    | $\downarrow -0.59$<br>$\uparrow +0.02$ |
| Fat jet pT Tracking                 | $\downarrow -0.10$<br>$\uparrow +1.37$    | $\downarrow -0.15$<br>$\uparrow +1.70$     | $\downarrow -0.17$<br>$\uparrow +1.71$    | $\downarrow -0.15$<br>$\uparrow +0.79$   |                                        | $\downarrow -0.09$<br>$\uparrow +0.51$    | $\downarrow -0.04$<br>$\uparrow +1.33$ | $\downarrow -0.10$<br>$\uparrow +1.03$    | $\downarrow -0.41$<br>$\uparrow +1.69$ |
| Musee ID                            | $\downarrow -1.27$<br>$\uparrow 0$        | $\downarrow -2.08$<br>$\uparrow 0$         | $\downarrow -1.93$<br>$\uparrow 0$        | $\downarrow -1.00$<br>$\uparrow 0$       | -                                      | $\downarrow -1.23$<br>$\uparrow 0$        | $\downarrow -1.15$<br>$\uparrow 0$     | $\downarrow -1.14$<br>$\uparrow 0$        | $\downarrow -0.88$<br>$\uparrow 0$     |
| Muons ID                            | ↓0<br>↑0                                  | 10                                         | ↓0<br>                                    | ↓0                                       |                                        | 10                                        | 10                                     | 10                                        | ↓0<br><u></u> ↑0                       |
| Muons MS                            | 10<br>10                                  | 10<br>10                                   | $\downarrow -0.02$                        | 10<br>10                                 | _                                      | 10<br>↓0                                  | 10<br>10                               | 10<br>10                                  | 10                                     |
| Muons Sagitta RES                   | ↑0<br>↓0                                  | $\uparrow 0$<br>$\downarrow 0$             | $\uparrow 0$<br>$\downarrow 0$            | $\uparrow 0$<br>$\downarrow 0$           | _                                      | $\uparrow 0 \\ \downarrow 0$              | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | $\uparrow 0$<br>$\downarrow 0$            | $\uparrow 0$<br>$\downarrow 0$             | $\uparrow 0$<br>$\downarrow 0$            | $\uparrow 0$<br>$\downarrow 0$           | -                                      | $\uparrow 0 \\ \downarrow 0$              | $\uparrow 0$<br>$\downarrow 0$         | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                                  | ↑0<br>↓0                                   | $\uparrow 0$<br>$\downarrow -0.02$        | ↑0<br>↓0                                 | -                                      | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Modelling                           | _                                         | $\uparrow + 46.60$<br>$\downarrow - 28.38$ | ↑+3.91<br>↓-5.32                          | -                                        | _                                      | $\uparrow +23.45 \\ \downarrow -16.85$    | $\uparrow +27.27 \\ \downarrow -19.62$ | $\uparrow +31.86 \\ \downarrow -22.95$    | _                                      |
| Default PRW                         | $\uparrow +0.34 \\ \downarrow -0.28$      | $\uparrow -1.34 \\ \downarrow +1.05$       | $\uparrow -0.20 \\ \downarrow -0.62$      | $\uparrow +3.63 \\ \downarrow -2.19$     | _                                      | $\uparrow -2.05 \\ \downarrow -0.46$      | $\uparrow -2.33 \\ \downarrow +0.19$   | $\uparrow +0.44 \\ \downarrow -0.62$      | $\uparrow -0.83 \\ \downarrow -1.11$   |
| Matrix meth. (fake rate)            |                                           | -                                          | _                                         | _                                        | $\uparrow -26.67 \\ \downarrow +24.30$ | _                                         | _                                      | _                                         | _                                      |
| Matrix meth. (real rate)            | _                                         | -                                          | _                                         | _                                        | $\uparrow +2.49 \\ \downarrow -2.56$   | _                                         |                                        | -                                         | _                                      |
| JES (Eta)                           | $\uparrow -0.06 \\ \downarrow +0.27$      | $\uparrow +2.63 \\ \downarrow +0.25$       | $\uparrow +0.27 \\ \downarrow +0.11$      | $\uparrow +0.06 \\ \downarrow -0.18$     |                                        | $\uparrow +0.05 \\ \downarrow -0.10$      | $\uparrow -0.44 \\ \downarrow +0.52$   | $\uparrow -0.18 \\ \downarrow +0.21$      | $\uparrow -0.20 \\ \downarrow -0.00$   |
| Jets Energy Resolution              | ^++1.20<br>                               | ↑+30.92<br>-                               | ^++2.13<br>                               | ↑+0.11<br>-                              |                                        | ↑-1.82<br>-                               | ↑-0.24<br>-                            | ↑+0.70<br>-                               | ^++1.21<br>                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.55 \\ \downarrow -2.10$      | $\uparrow +17.30 \\ \downarrow -3.35$      | ↑+1.39<br>↓-0.13                          | $\uparrow +1.55 \\ \downarrow -1.79$     | _                                      | $\uparrow +0.63 \\ \downarrow -2.43$      | $\uparrow +1.21 \\ \downarrow -1.58$   | $\uparrow +3.18 \\ \downarrow -1.54$      | $\uparrow +1.75 \\ \downarrow -0.48$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.07 \\ \downarrow -0.87$      | $\uparrow +11.16 \\ \downarrow -4.27$      | $\uparrow +0.86 \\ \downarrow -0.56$      | $\uparrow +0.43 \\ \downarrow -0.50$     | _                                      | $\uparrow +1.02 \\ \downarrow -0.58$      | $\uparrow +0.38 \\ \downarrow -0.42$   | $\uparrow +0.45 \\ \downarrow -0.96$      | $\uparrow +1.36 \\ \downarrow -0.57$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.69 \\ \downarrow -0.32$      | $\uparrow +4.34 \\ \downarrow +2.66$       | $\uparrow +0.37 \\ \downarrow -0.16$      | $\uparrow +0.44 \\ \downarrow -0.71$     | _                                      | $\uparrow +0.05 \\ \downarrow -0.11$      | $\uparrow +0.19 \\ \downarrow -0.31$   | ↑+0.43<br>↓-0.38                          | $\uparrow +0.58 \\ \downarrow -0.39$   |

Таблица К.12. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR7 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 2                                      | ee                                       |                                        | top                                    |                                          | ц                                           | 4                                           | +<br>+                                    | 9                                           |
|-------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|
|                                     | ↑<br>1                                 | *                                        |                                        | ele                                    | 0                                        | osc                                         | +                                           | *                                         | 070                                         |
|                                     | 2                                      | 12                                       | 4                                      | ing                                    | ake                                      | Dibe                                        | 2                                           | 12                                        | - L                                         |
| Default Electron Identification Eff | ↑+1.26                                 | ↑+1.33                                   | +++1.12                                | 02<br>↑+1.16                           | -                                        | ⊢<br>↑+1.33                                 | ^+<br>↑+1.09                                | ↑+1.18                                    | щ<br>↑+1.52                                 |
|                                     | $\downarrow -1.26$<br>$\uparrow +1.06$ | $\downarrow -1.33$<br>$\uparrow +1.06$   | $\downarrow -1.12$<br>$\uparrow +0.88$ | $\downarrow -1.16$<br>$\uparrow +1.24$ | -                                        | $\downarrow -1.33$<br>$\uparrow +1.27$      | $\downarrow -1.09$<br>$\uparrow +0.68$      | $\downarrow -1.18$<br>$\uparrow +0.76$    | $\downarrow -1.52$<br>$\uparrow +3.35$      |
| Default Electron Isolation Eff      | $\downarrow -1.06$                     | $\downarrow -1.06$                       | $\downarrow -0.88$                     | $\downarrow -1.24$                     | -                                        | $\downarrow -1.27$<br>$\uparrow \perp 0.22$ | $\downarrow -0.68$<br>$\uparrow \perp 0.21$ | $\downarrow -0.76$                        | $\downarrow -3.35$<br>$\uparrow \perp 0.22$ |
| Default Electron Reconstruction Eff | $\downarrow -0.22$                     | $\downarrow -0.22$                       | $\downarrow -0.21$                     | $\downarrow -0.20$                     | _                                        | $\downarrow -0.22$                          | $\downarrow -0.21$                          | $\downarrow -0.22$                        | $\downarrow -0.22$                          |
| Electrons Scale                     | $\uparrow -0.64 \\ \downarrow +0.67$   | $\uparrow -1.87 \\ \downarrow +1.64$     | $\uparrow -0.44 \\ \downarrow +0.56$   | $\uparrow +0.30 \\ \downarrow -0.21$   | _                                        | $\uparrow -1.03 \\ \downarrow +0.36$        | $\uparrow -0.17 \\ \downarrow +0.21$        | $\uparrow -0.39 \\ \downarrow +0.17$      | $\uparrow -0.48 \\ \downarrow +0.80$        |
| Electrons Resolution                | $\uparrow +0.17 \\ \downarrow -0.04$   | $\uparrow +0.25 \\ \downarrow +0.58$     | $\uparrow -0.13 \\ \downarrow -0.26$   | $\uparrow +0.29 \\ \downarrow +0.01$   | _                                        | $\uparrow -0.37 \\ \downarrow +0.33$        | $\uparrow +0.02 \\ \downarrow -0.08$        | $\uparrow -0.27 \\ \downarrow +0.09$      | $\uparrow +0.16 \\ \downarrow +0.16$        |
| Default Electron Trigger Eff        | $\uparrow +0.21$<br>$\downarrow -0.20$ | $\uparrow +0.23$<br>$\downarrow -0.23$   | $\uparrow +0.18$<br>$\downarrow -0.18$ | $\uparrow +0.17$<br>$\downarrow -0.17$ | _                                        | $\uparrow +0.19$<br>$\downarrow -0.19$      | $\uparrow +0.18$<br>$\downarrow -0.18$      | $\uparrow +0.20$<br>$\downarrow -0.20$    | $\uparrow +0.19$<br>$\downarrow -0.19$      |
| Etmiss RES Parallel                 | ↑-0.35<br>↓-0.35                       | $\uparrow -0.34$                         | $\uparrow -0.21$<br>$\downarrow -0.21$ | $\uparrow -0.23$<br>$\downarrow -0.23$ | _                                        | $\uparrow -0.44$                            | $\uparrow -0.40$<br>$\downarrow -0.40$      | $\uparrow +0.45$<br>+0.45                 | $\uparrow +0.18$<br>$\downarrow +0.18$      |
| Etmiss RES Perpendicular            | ↑-0.46<br>0.46                         | $\uparrow -3.70$<br>$\downarrow -3.70$   | $\uparrow -0.79$<br>$\downarrow -0.79$ | $\uparrow -0.46$                       | -                                        | $\uparrow -0.05$<br>$\downarrow -0.05$      | $\uparrow -0.48$<br>$\downarrow -0.48$      | $\uparrow -0.02$                          | $\uparrow +0.16$<br>$\downarrow +0.16$      |
| Etmiss Scale                        | ↑-0.32<br>↓+0.31                       | $\uparrow -3.71$<br>$\downarrow +6.34$   | $\uparrow -0.29$<br>$\downarrow +0.27$ | ↑-0.46                                 | -                                        | ↑+0.20<br>↓+0.04                            | $\uparrow -0.22$<br>$\downarrow \pm 0.17$   | $\uparrow -0.09$<br>$\downarrow \pm 0.33$ | $\uparrow +0.16$<br>$\downarrow -0.17$      |
| Fat jet D2 Baseline                 | ↑-2.71                                 | $\uparrow -2.15$                         | $\uparrow -2.42$                       | ↑-2.33                                 | -                                        | ↑-2.29                                      | $\uparrow -1.90$                            | ↑-2.02                                    | $\uparrow -2.65$                            |
| Fat jet D2 Modelling                | ↑-3.89                                 | ↑-3.25                                   | ↑-4.62                                 | ↑-4.08                                 | _                                        | ↑-3.05                                      | ↑-3.01                                      | ↑-4.17                                    | ↑-5.08                                      |
| Eat jet D2 TotalStat                | $\uparrow -0.28$                       | $\uparrow -0.09$                         | $\uparrow -0.24$                       | $\uparrow -0.23$                       | _                                        | $\uparrow -0.10$                            | $\uparrow -0.07$                            | $\uparrow +2.95$<br>$\uparrow -0.28$      | $\uparrow -0.31$                            |
| Fat jet D2 Treaking                 | $\uparrow +0.24$<br>$\uparrow -0.49$   | $\uparrow +0.25$<br>$\uparrow -0.16$     | $\uparrow +0.44$<br>$\uparrow -0.65$   | $\downarrow 0$<br>$\uparrow +0.07$     | -                                        | $\uparrow +0.08$<br>$\uparrow -0.14$        | $\uparrow +0.19$<br>$\uparrow -0.22$        | $\uparrow +0.19$<br>$\uparrow -0.47$      | $\downarrow +0.30$<br>$\uparrow -0.64$      |
|                                     | $\downarrow +0.39$<br>$\uparrow +1.50$ | $\downarrow +0.73$<br>$\uparrow +2.92$   | $\downarrow +0.51$<br>$\uparrow +1.31$ | $\downarrow +0.09$<br>$\uparrow +1.11$ | -                                        | $\downarrow +0.15$<br>$\uparrow +0.10$      | $\downarrow +0.59$<br>$\uparrow +1.89$      | $\downarrow +0.17$<br>$\uparrow +0.52$    | $\downarrow +0.64$<br>$\uparrow -0.83$      |
| Fat jet Mass Baseline               | $\downarrow -1.46$                     | $\downarrow -0.41$                       | $\downarrow -2.12$                     | $\downarrow -1.11$                     | -                                        | $\downarrow -0.93$                          | $\downarrow -1.80$                          | $\downarrow -0.61$                        | $\downarrow +2.27$                          |
| Fat jet Mass Modelling              | $\downarrow -1.16$                     | $\downarrow -0.50$                       | $\downarrow -1.94$                     | $\downarrow -0.01$                     | _                                        | $\downarrow -0.89$                          | $\downarrow -1.51$                          | $\downarrow -0.49$                        | $\downarrow +2.32$<br>$\downarrow +2.32$    |
| Fat jet Mass TotalStat              | $\uparrow +0.06 \\ \downarrow -0.08$   | ↑+0.39<br>↓0                             | $\uparrow +0.01 \\ \downarrow -0.17$   | $\uparrow^{+0.22}_{\downarrow 0}$      | _                                        | $\uparrow +0.04 \\ \downarrow -0.12$        | $\uparrow +0.18 \\ \downarrow -0.00$        | $\uparrow +0.12 \\ \downarrow -0.19$      | $\uparrow +0.86 \\ \downarrow +0.70$        |
| Fat jet Mass Tracking               | $\uparrow +0.75 \\ \downarrow -0.76$   | $\uparrow +0.05 \\ \downarrow -0.19$     | $\uparrow +0.70 \\ \downarrow -1.38$   | $\uparrow +0.89 \\ \downarrow -0.65$   | _                                        | $\uparrow +0.28 \\ \downarrow -0.31$        | $\uparrow +1.08 \\ \downarrow -0.77$        | $\uparrow +0.41 \\ \downarrow -0.66$      | $\uparrow +0.78 \\ \downarrow +1.77$        |
| Fat jet pT Baseline                 | $\uparrow +2.55 \\ \downarrow -2.65$   | $\uparrow +0.27 \\ \downarrow +0.23$     | $\uparrow +3.43 \\ \downarrow -3.78$   | $\uparrow +2.49 \\ \downarrow -1.79$   | _                                        | $\uparrow +1.93 \\ \downarrow +0.32$        | $\uparrow +3.26 \\ \downarrow -2.91$        | $\uparrow +2.76 \\ \downarrow -2.15$      | $\uparrow +2.02 \\ \downarrow -0.54$        |
| Fat jet pT Modelling                | ↑+1.14<br>↓-1.13                       | $\uparrow +0.42 \\ \downarrow -0.18$     | $\uparrow +1.21 \\ \downarrow -1.61$   | $\uparrow +0.09 \\ \downarrow -0.81$   |                                          | $\uparrow +0.65 \\ \downarrow -0.46$        | $\uparrow +0.93 \\ \downarrow -1.48$        | $\uparrow +0.95 \\ \downarrow -0.82$      | $\uparrow +0.63 \\ \downarrow -0.80$        |
| Fat jet pT TotalStat                | $\uparrow +0.14 \\ \downarrow -0.19$   | $\uparrow +0.07 \\ \downarrow -0.24$     | $\uparrow +0.31 \\ \downarrow -0.21$   | ↑0<br>↓0                               | _                                        | ↑+0.08<br>↓-0.08                            | $\uparrow -0.04 \\ \downarrow -0.09$        | $\uparrow +0.15 \\ \downarrow -0.29$      | ↑+0.30<br>↓-0.33                            |
| Fat jet pT Tracking                 | $\uparrow +1.56 \\ \downarrow -1.75$   | $\uparrow +1.15 \\ \downarrow -1.10$     | $\uparrow +2.05 \\ \downarrow -2.16$   | $\uparrow +0.09 \\ \downarrow -0.49$   | _                                        | $\uparrow +0.78 \\ \downarrow -0.57$        | $\uparrow +1.66 \\ \downarrow -1.97$        | $\uparrow +1.37 \\ \downarrow -1.00$      | $\uparrow +1.12 \\ \downarrow -0.97$        |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                        |                                             |                                             | ↑0<br>↓0                                  |                                             |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>⊥0                                 | ↑0<br>↓0                               | ↑0<br>⊥0                               | _                                        | ↑0<br>↓0                                    | ↑0<br>⊥0                                    | ↑0<br>⊥0                                  | ↑0<br>↓0                                    |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                        | ↑0<br>↓0                                    | ↑0<br>1.0                                   | ↑0<br>.1.0                                | ↑0<br>.1.0                                  |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                        | ↑0<br>↓0                                    | ↑0<br>1.0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                    |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                        | ↑0<br>↓0                                    | ↑0<br>↓0                                    | ↑0<br>↓0                                  | ↑0<br>↓0                                    |
| Modelling                           | -                                      | $\uparrow +46.54$<br>$\downarrow -28.48$ | $\uparrow +4.03$                       | -                                      | _                                        | $\uparrow +24.10$<br>$\downarrow -17.36$    | $\uparrow + 26.66$                          | $\uparrow +32.69$                         | -                                           |
| Default PRW                         | ↑-0.06<br>↓-0.05                       | $\uparrow -0.07$<br>$\downarrow -0.52$   | $\uparrow -0.49$                       | ↑+1.69<br>↓-1.32                       |                                          | ↑-2.00<br>↓-0.94                            | $\uparrow -2.37$<br>$\downarrow \pm 0.62$   | $\uparrow -0.62$<br>$\downarrow \pm 0.73$ | $\uparrow +4.66$<br>$\downarrow -0.81$      |
| Matrix meth. (fake rate)            |                                        |                                          | -                                      | -                                      | $\uparrow -25.34$<br>$\downarrow +20.56$ | -                                           |                                             |                                           | -                                           |
| Matrix meth. (real rate)            | _                                      | -                                        | _                                      | _                                      | $\uparrow +2.67 \\ \downarrow -2.76$     | _                                           | _                                           | _                                         |                                             |
| JES (Eta)                           | $\uparrow -0.38 \\ \downarrow +0.09$   | $\uparrow +1.38 \\ \downarrow +3.04$     | $\uparrow -0.45 \\ \downarrow -0.08$   | $\uparrow +0.15 \\ \downarrow +0.21$   |                                          | $\uparrow +0.09 \\ \downarrow -0.18$        | $\uparrow -0.29 \\ \downarrow +0.11$        | $\uparrow -0.45 \\ \downarrow +0.30$      | $\uparrow -0.02 \\ \downarrow +0.34$        |
| Jets Energy Resolution              | ^+0.06<br>_                            | ^+28.05<br>-                             | ↑-0.07<br>-                            | ^++1.08<br>-                           |                                          | ↑+0.12<br>-                                 | ↑+0.25<br>-                                 |                                           | ↑-0.33<br>-                                 |
| JES (In-situ analyses - N.P.1)      | $\uparrow +1.97 \\ \downarrow -2.32$   | $\uparrow +15.06 \\ \downarrow +0.72$    | $\uparrow -0.02 \\ \downarrow -0.90$   | $\uparrow +0.03 \\ \downarrow -1.11$   |                                          | $\uparrow +2.87 \\ \downarrow -1.90$        | $\uparrow +2.15 \\ \downarrow -1.61$        | $\uparrow +1.24 \\ \downarrow -0.31$      | $\uparrow +1.12 \\ \downarrow -0.51$        |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.00 \\ \downarrow -1.20$   | $\uparrow +9.03 \\ \downarrow -1.98$     | $\uparrow +0.94 \\ \downarrow -0.95$   | $\uparrow -0.20 \\ \downarrow +0.33$   | _                                        | ↑+0.28<br>↓-0.99                            | $\uparrow +0.52 \\ \downarrow -1.21$        | $\uparrow +0.42 \\ \downarrow -0.55$      | $\uparrow +1.29 \\ \downarrow -0.48$        |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.22 \\ \downarrow -0.58$   | $\uparrow +1.70 \\ \downarrow +2.68$     | $\uparrow +0.78 \\ \downarrow -0.72$   | $\uparrow +0.25 \\ \downarrow -0.42$   |                                          | $\uparrow +1.85 \\ \downarrow +0.14$        | $\uparrow +0.29 \\ \downarrow -0.70$        | $\uparrow -0.02 \\ \downarrow -0.26$      | $\uparrow +0.49 \\ \downarrow -0.33$        |

Таблица К.13. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR8 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | ev                                        | ee<br>↑                                  |                                           | top                                    |                                        | по                                        | 77                                      | → ++                                       | 00                                        | 00                                        |
|-------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                     | $\stackrel{\uparrow}{}$                   | $*\lambda/Z$                             | tt                                        | Single                                 | Fake                                   | Dibose                                    | ↑<br>A                                  | * L/Z                                      | EL 08                                     | EL 09                                     |
| Default Electron Identification Eff | ↑+1.25                                    | ↑+1.40                                   | ↑+1.13                                    | ↑+1.15                                 | -                                      | ↑+1.36                                    | ↑+1.09                                  | ↑+1.15                                     | $\uparrow +1.52$                          | ↑+1.57                                    |
| Default Electron Isolation Eff      | $\uparrow +1.13$<br>$\downarrow -1.13$    | $\uparrow +1.16$<br>$\uparrow +1.16$     | ↑+0.99                                    | $\uparrow +1.38$<br>$\downarrow -1.38$ | _                                      | ↑+1.41                                    | $\uparrow +0.71$<br>$\downarrow -0.71$  | $\uparrow +0.80$                           | $\uparrow +3.52$<br>$\downarrow -3.52$    | $\uparrow +3.51$                          |
| Default Electron Reconstruction Eff | $\uparrow +0.22$<br>$\downarrow -0.22$    | $\uparrow +0.23$<br>$\downarrow -0.23$   | $\uparrow +0.20$<br>$\downarrow -0.20$    | $\uparrow +0.18$<br>$\downarrow -0.18$ |                                        | $\uparrow +0.21$<br>$\downarrow -0.21$    | $\uparrow +0.21$<br>$\downarrow -0.21$  | $\uparrow +0.22$<br>$\downarrow -0.22$     | $\uparrow +0.21$<br>$\downarrow -0.21$    | $\uparrow +0.23$<br>$\downarrow -0.23$    |
| Electrons Scale                     | $\uparrow -0.62$<br>$\downarrow \pm 0.80$ | $\uparrow -2.41$<br>+2.21                | $\uparrow -0.57$<br>$\downarrow \pm 0.57$ | ↑-0.51                                 |                                        | $\uparrow -1.36$<br>$\downarrow \pm 0.12$ | $\uparrow -0.01$<br>+0.39               | $\uparrow -0.41$<br>$\downarrow \pm 0.30$  | $\uparrow -0.59$<br>$\downarrow \pm 0.23$ | ↑-0.43                                    |
| Electrons Resolution                | ↑+0.14<br>↓-0.11                          | $\uparrow +1.16$<br>$\downarrow -0.04$   | $\uparrow -0.20$<br>$\downarrow -0.23$    | $\uparrow -0.20$<br>$\downarrow -0.98$ | _                                      | $\uparrow -0.10$<br>+0.45                 | $\uparrow -0.01$<br>$\downarrow -0.09$  | $\uparrow -0.04$<br>$\downarrow -0.37$     | $\uparrow -0.02$<br>$\downarrow +0.01$    | $\uparrow -0.00$<br>$\downarrow +0.02$    |
| Default Electron Trigger Eff        | $\uparrow +0.20$<br>$\downarrow -0.20$    | $\uparrow +0.24$<br>$\downarrow -0.24$   | $\uparrow +0.17$<br>$\downarrow -0.17$    | ↑+0.15<br>↓-0.15                       | _                                      | ↑+0.19<br>↓-0.19                          | ↑+0.18<br>↓-0.18                        | $\uparrow +0.19$<br>$\downarrow -0.19$     | $\uparrow +0.18$<br>$\downarrow -0.18$    | $\uparrow +0.21$<br>$\downarrow -0.21$    |
| Etmiss RES Parallel                 | $\uparrow -0.16$<br>$\downarrow -0.16$    | ↑-3.37<br>↓-3.37                         | ↑-0.99<br>↓-0.99                          | ↑-1.89<br>↓-1.89                       | -                                      | ↑-0.84<br>0.84                            | ↑+0.55<br>↓+0.55                        | $\uparrow -0.40$<br>$\downarrow -0.40$     | ↑+0.35<br>↓+0.35                          | ↑+0.00                                    |
| Etmiss RES Perpendicular            | $\uparrow -0.18$<br>$\downarrow -0.18$    | $\uparrow -4.90$                         | $\uparrow -0.47$<br>$\downarrow -0.47$    | $\uparrow -1.20$<br>$\downarrow -1.20$ | -                                      | ↑-0.35<br>↓-0.35                          | ↑+0.19<br>↓+0.19                        | $\uparrow -0.40$<br>$\downarrow -0.40$     | $\uparrow +0.17$<br>$\downarrow +0.17$    | ↑-0.09<br>↓-0.09                          |
| Etmiss Scale                        | $\uparrow -0.12$<br>$\downarrow +0.26$    | $\uparrow -4.89$<br>$\downarrow +4.46$   | $\uparrow -0.26$<br>$\downarrow +0.55$    | ↑-0.99<br>↓0                           | _                                      | $\uparrow -0.92$<br>$\downarrow +0.42$    | $\uparrow -0.15$<br>$\downarrow +0.28$  | ↑-0.36<br>↓-0.21                           | $\uparrow 0$<br>$\downarrow +0.02$        | ↑-0.30<br>↓0                              |
| Fat jet D2 Baseline                 | $\uparrow -2.82$<br>$\downarrow +2.39$    | $\uparrow -2.35$<br>+4.02                | $\uparrow -2.89$<br>$\downarrow +3.56$    | ↑-2.39<br>↓+3.34                       | -                                      | $\uparrow -2.52$<br>+2.60                 | $\uparrow -1.83$<br>+2.59               | $\uparrow -2.23$<br>$\downarrow +2.70$     | $\uparrow -2.62$                          | $\uparrow -4.81$<br>$\downarrow +4.30$    |
| Fat jet D2 Modelling                | $\uparrow -4.07$<br>$\downarrow +3.84$    | $\uparrow -3.52$<br>+4.83                | $\uparrow -5.32$<br>$\downarrow +5.77$    | ↑-3.45<br>↓+4.48                       | -                                      | ↑-3.15<br>+4.04                           | ↑-3.24<br>+3.89                         | $\uparrow -4.50$<br>$\downarrow +3.75$     | $\uparrow -3.90$<br>+4.82                 | $\uparrow -5.97$<br>$\downarrow +5.51$    |
| Fat jet D2 TotalStat                | $\uparrow -0.23$<br>$\downarrow +0.18$    | $\uparrow -0.15$<br>+0.41                | $\uparrow -0.23$<br>$\downarrow +0.44$    | ↑0<br>.1.0                             | -                                      | $\uparrow -0.07$<br>$\downarrow \pm 0.12$ | $\uparrow -0.04$<br>+0.14               | $\uparrow -0.15$<br>++0.24                 | $\uparrow -0.25$<br>$\downarrow \pm 0.21$ | ↑-0.14<br>↓0                              |
| Fat jet D2 Tracking                 | $\uparrow -0.47$<br>$\downarrow +0.40$    | $\uparrow -0.26$<br>+1.08                | $\uparrow -0.87$<br>$\downarrow \pm 0.64$ | ↑+0.48<br>↓+0.14                       | -                                      | $\uparrow -0.11$<br>$\downarrow \pm 0.16$ | $\uparrow -0.22$<br>+0.41               | $\uparrow -0.36$<br>$\downarrow +0.17$     | $\uparrow -0.54$<br>$\downarrow +0.92$    | $\uparrow -0.14$<br>$\downarrow \pm 0.37$ |
| Fat jet Mass Baseline               | ↑+1.09<br>↓-1.06                          | $\uparrow +4.29$<br>$\downarrow -0.23$   | ↑+0.89<br>↓-1.32                          | $\uparrow +0.34$<br>$\downarrow -2.02$ | -                                      | ↑-0.49<br>↓-1.66                          | ↑+1.56<br>↓-0.20                        | $\uparrow -0.12$<br>$\downarrow -0.49$     | $\uparrow +0.29$<br>$\downarrow +0.01$    | $\uparrow -1.27$<br>$\downarrow +5.15$    |
| Fat jet Mass Modelling              | ↑+1.44<br>↓-1.10                          | $\uparrow +0.03$<br>$\downarrow -0.57$   | ↑+1.74<br>↓-1.49                          | ↑+0.34<br>↓-1.20                       | -                                      | $\uparrow -0.02$                          | ↑+1.69<br>↓-0.78                        | ↑+0.33<br>↓-1.04                           | ↑+1.31<br>↓-1.19                          | $\uparrow -2.00$<br>$\downarrow +6.00$    |
| Fat jet Mass TotalStat              | ↑+0.03<br>↓-0.06                          | $\uparrow -0.11$<br>$\downarrow -0.24$   | ↑+0.15<br>↓-0.34                          | ↑0<br>↓-0.99                           | _                                      | $\uparrow 0$<br>$\downarrow -0.07$        | ↑+0.34<br>↓-0.01                        | ↑+0.06<br>↓-0.38                           | ↑+0.36<br>↓-1.08                          | $\uparrow +0.51 \\ \downarrow +0.15$      |
| Fat jet Mass Tracking               | $\uparrow +0.88 \\ \downarrow -0.72$      | ↑+0.03<br>↓-0.09                         | ↑+0.91<br>↓-0.99                          | ↑+0.34<br>↓-2.02                       | _                                      | $\uparrow -0.06$<br>$\downarrow -1.68$    | ↑+1.31<br>↓+0.00                        | $\uparrow -0.02$<br>$\downarrow -0.70$     | $\uparrow +0.89$<br>$\downarrow -2.36$    | $\uparrow -0.60$<br>$\downarrow +2.40$    |
| Fat jet pT Baseline                 | $\uparrow +2.09 \\ \downarrow -2.22$      | ↑+1.02<br>↓-1.31                         | $\uparrow +2.46 \\ \downarrow -3.29$      | $\uparrow +2.00 \\ \downarrow -2.37$   |                                        | ↑+1.30<br>↓+1.44                          | $\uparrow +2.53$<br>$\downarrow -1.44$  | ↑+3.04<br>↓-2.01                           | $\uparrow +2.42 \\ \downarrow -2.93$      | ↑+0.69<br>↓-0.35                          |
| Fat jet pT Modelling                | $\uparrow +1.11 \\ \downarrow -1.03$      | $\uparrow +1.12 \\ \downarrow +0.09$     | $\uparrow +1.35 \\ \downarrow -1.72$      | $\uparrow +0.14 \\ \downarrow -1.33$   | _                                      | $\uparrow +0.43 \\ \downarrow -1.07$      | $\uparrow +0.86 \\ \downarrow -0.92$    | $\uparrow +0.43 \\ \downarrow -1.06$       | $\uparrow +0.74 \\ \downarrow -0.37$      | $\uparrow -0.35 \\ \downarrow -0.43$      |
| Fat jet pT TotalStat                | $\uparrow +0.23 \\ \downarrow -0.16$      | ↑+0.11<br>↓0                             | ↑+0.29<br>↓-0.33                          | ↑0<br>↓-0.99                           | _                                      | ↑+0.08<br>↓-0.11                          | $\uparrow +0.18 \\ \downarrow +0.05$    | ↑+0.09<br>↓-0.24                           |                                           | ↑-0.15<br>↓0                              |
| Fat jet pT Tracking                 | $\uparrow +1.75 \\ \downarrow -1.78$      | $\uparrow +1.91 \\ \downarrow -2.80$     | $\uparrow +2.65 \\ \downarrow -2.69$      | $\uparrow +0.22 \\ \downarrow -0.85$   | _                                      | $\uparrow +0.80 \\ \downarrow -1.16$      | $\uparrow +2.05 \\ \downarrow -1.29$    | $\uparrow +1.53 \\ \downarrow -1.69$       | $\uparrow +1.78 \\ \downarrow -1.25$      | $\uparrow +0.50 \\ \downarrow -0.17$      |
| Muons ID                            |                                           |                                          |                                           | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                  |
| Muons MS                            | ↑0<br>↓0                                  |                                          | ↑0<br>↓0                                  | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                  |
| Muons Sagitta RES                   | ↑0<br>↓0                                  |                                          | ↑0<br>↓0                                  | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                  |
| Muons Sagitta RHO                   | ↑0<br>↓0                                  |                                          | ↑0<br>↓0                                  | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                  |
| Muons Scale                         | ↑0<br>↓0                                  |                                          | ↑0<br>↓0                                  | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                                  |
| Modelling                           | _                                         | $\uparrow + 44.76 \\ \downarrow - 28.62$ | $\uparrow + 23.78 \\ \downarrow - 23.40$  |                                        |                                        | $\uparrow + 23.92 \\ \downarrow - 17.24$  | $\uparrow + 27.77 \\ \downarrow -19.74$ | $\uparrow + 34.61$<br>$\downarrow - 25.73$ |                                           |                                           |
| Default PRW                         | $\uparrow +0.12 \\ \downarrow -0.14$      | $\uparrow +0.41 \\ \downarrow -0.25$     | $\uparrow +0.79 \\ \downarrow -2.60$      | $\uparrow +6.40 \\ \downarrow -3.89$   |                                        | $\uparrow -1.68 \\ \downarrow -0.02$      | $\uparrow -0.79 \\ \downarrow +0.43$    | ↑+1.08<br>↓-1.18                           | $\uparrow +5.12 \\ \downarrow -3.99$      | $\uparrow -0.44 \\ \downarrow +1.78$      |
| Matrix meth. (fake rate)            | _                                         | _                                        |                                           |                                        | $\uparrow -30.08 \\ \downarrow +20.73$ |                                           | _                                       | _                                          |                                           | _                                         |
| Matrix meth. (real rate)            | _                                         | _                                        |                                           | _                                      | $\uparrow +2.48 \\ \downarrow -2.57$   | _                                         | _                                       |                                            | _                                         | _                                         |
| JES (Eta)                           | $\uparrow -0.06 \\ \downarrow +0.18$      | $\uparrow -0.20 \\ \downarrow -0.63$     | $\uparrow -0.01 \\ \downarrow +0.76$      | $\uparrow -0.99 \\ \downarrow 0$       | -                                      | $\uparrow -0.69 \\ \downarrow +0.23$      | $\uparrow -0.17 \\ \downarrow +0.42$    | $\uparrow -0.38 \\ \downarrow -0.54$       | $\uparrow -0.19 \\ \downarrow +0.04$      | $\uparrow 0$<br>$\downarrow 0$            |
| Jets Energy Resolution              | ^++0.51<br>_                              | ↑+19.44<br>-                             | ↑-0.60<br>-                               | ↑-0.46<br>-                            |                                        | ↑+0.27<br>-                               | ↑+1.49<br>-                             | ↑-1.89<br>-                                | ^++1.03<br>                               | ↑-0.98<br>-                               |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.22 \\ \downarrow -2.09$      | $\uparrow +9.42 \\ \downarrow -0.59$     | $\uparrow +1.75 \\ \downarrow -0.53$      | $\uparrow +1.36 \\ \downarrow -2.00$   | _                                      | ↑+1.30<br>↓-3.82                          | $\uparrow +1.14 \\ \downarrow -1.74$    | $\uparrow +0.15 \\ \downarrow -1.76$       | $\uparrow +0.69 \\ \downarrow -0.93$      | $\uparrow +0.31 \\ \downarrow -0.69$      |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.34 \\ \downarrow -1.30$      | ↑+9.83<br>↓-4.13                         | $\uparrow +0.76 \\ \downarrow -0.85$      | $\uparrow 0$<br>$\downarrow -1.65$     |                                        | $\uparrow +0.62 \\ \downarrow -0.80$      | $\uparrow +0.84 \\ \downarrow -0.80$    | $\uparrow -0.22 \\ \downarrow -1.22$       | $\uparrow +0.23 \\ \downarrow -0.76$      | $\uparrow +0.47 \\ \downarrow -0.80$      |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.32 \\ \downarrow -0.35$      | $\uparrow -0.65 \\ \downarrow +1.36$     | $\uparrow +0.69 \\ \downarrow -0.08$      | $\uparrow -0.99 \\ \downarrow -0.93$   | _                                      | $\uparrow +0.27 \\ \downarrow +0.16$      | $\uparrow -0.11 \\ \downarrow -0.48$    | $\uparrow +0.11 \\ \downarrow -0.43$       | $\uparrow +0.23 \\ \downarrow +0.03$      | $\uparrow -0.16 \\ \downarrow -0.59$      |

Таблица К.14. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | ev                                     | ) ee                                   |                                          | t op                                   |                                        | uo                                     | τν                                     | + + +                                  | 00                                                          | 50                                     |
|-------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------|
|                                     | $\uparrow$ $M$                         | $*\lambda/Z$                           | tt                                       | Single                                 | Fake                                   | Dibos                                  | $\uparrow$ $M$                         | $*\lambda/Z$                           | EL 10                                                       | EL 12                                  |
| Default Electron Identification Eff | $\uparrow +1.25$<br>$\downarrow -1.25$ | $\uparrow +1.36$                       | $\uparrow +1.14$<br>$\downarrow -1.14$   | ↑+1.11<br>↓-1.11                       | -                                      | ↑+1.28<br>↓-1.28                       | ↑+1.10<br>↓-1.10                       | ↑+1.14<br>↓-1.14                       | $\uparrow +1.47$<br>$\downarrow -1.47$                      | $\uparrow +1.58$<br>1-1.58             |
| Default Electron Isolation Eff      | ↑+1.20<br>↓-1.19                       | $\uparrow +1.17$<br>$\downarrow -1.17$ | $\uparrow +1.07$<br>$\downarrow -1.07$   | $\uparrow +1.45$<br>$\downarrow -1.45$ |                                        | $\uparrow +1.42$<br>$\downarrow -1.42$ | $\uparrow +0.75$<br>$\downarrow -0.75$ | ↑+0.88<br>↓-0.88                       | $\uparrow +3.68$                                            | $\uparrow +3.76$<br>$\downarrow -3.76$ |
| Default Electron Reconstruction Eff | ↑+0.21<br>↓-0.22                       | $\uparrow +0.24$<br>$\downarrow -0.24$ | $\uparrow +0.20$<br>$\downarrow -0.20$   | ↑+0.18<br>↓-0.18                       | _                                      | $\uparrow +0.21$<br>$\downarrow -0.21$ | ↑+0.21<br>↓-0.21                       | $\uparrow +0.21$<br>$\downarrow -0.21$ | $\uparrow +0.23$<br>$\downarrow -0.23$                      | $\uparrow +0.22$<br>$\downarrow -0.22$ |
| Electrons Scale                     | $\uparrow -0.61$<br>$\downarrow +0.49$ | $\uparrow -1.21$<br>+1.28              | $\uparrow -0.34$<br>$\downarrow +0.92$   | ↑-0.52                                 | _                                      | $\uparrow -0.58$<br>$\downarrow +5.07$ | ↑+0.16<br>↓+0.20                       | $\uparrow -0.35$<br>$\downarrow +0.31$ | $\uparrow -1.13$<br>$\downarrow +0.73$                      | $\uparrow -0.13$<br>$\downarrow +0.26$ |
| Electrons Resolution                | ↑+0.03<br>↓-0.05                       | $\uparrow +0.41$<br>$\downarrow -0.48$ | $\uparrow +0.12 \\ \downarrow +0.37$     | ↑0<br>↓+0.77                           | _                                      | $\uparrow -0.46$<br>$\downarrow +5.47$ | ↑+0.23<br>↓-0.04                       | ↑+0.36<br>↓-0.39                       | $\uparrow -0.00$<br>$\downarrow +0.39$                      | $\uparrow 0$<br>$\downarrow -0.26$     |
| Default Electron Trigger Eff        | $\uparrow +0.19 \\ \downarrow -0.19$   | ↑+0.23<br>↓-0.23                       | $\uparrow +0.17 \\ \downarrow -0.17$     | $\uparrow +0.15 \\ \downarrow -0.15$   | _                                      | ↑+0.18<br>↓-0.18                       | $\uparrow +0.17 \\ \downarrow -0.17$   | $\uparrow +0.18 \\ \downarrow -0.18$   | ↑+0.20<br>↓-0.20                                            | $\uparrow +0.20 \\ \downarrow -0.20$   |
| Etmiss RES Parallel                 | $\uparrow -0.24 \\ \downarrow -0.24$   | ↑-3.07<br>↓-3.07                       | $\uparrow -0.11$<br>$\downarrow -0.11$   | ↑0<br>↓0                               | _                                      | $\uparrow -1.03 \\ \downarrow -1.03$   | ↑+0.33<br>↓+0.33                       | $\uparrow -1.20 \\ \downarrow -1.20$   | ↑+0.55<br>↓+0.55                                            | $\uparrow +0.13 \\ \downarrow +0.13$   |
| Etmiss RES Perpendicular            | $\uparrow -0.28 \\ \downarrow -0.28$   | $\uparrow -4.12 \\ \downarrow -4.12$   | $\uparrow +0.04 \\ \downarrow +0.04$     | $\uparrow -0.49 \\ \downarrow -0.49$   | _                                      | $\uparrow +0.70 \\ \downarrow +0.70$   | $\uparrow +0.02 \\ \downarrow +0.02$   | $\uparrow -0.63$<br>$\downarrow -0.63$ | $\uparrow +0.25 \\ \downarrow +0.25$                        | ↑+0.00<br>↓+0.00                       |
| Etmiss Scale                        | $\uparrow -0.18 \\ \downarrow +0.17$   | $\uparrow -3.69 \\ \downarrow +3.65$   | $\uparrow +0.14 \\ \downarrow +0.64$     | ↑0<br>↓+0.54                           | _                                      | $\uparrow -0.50 \\ \downarrow +0.68$   | $\uparrow -0.24 \\ \downarrow +0.20$   | $\uparrow -0.54 \\ \downarrow +0.15$   | $\uparrow +0.21 \\ \downarrow +0.19$                        | ↑+0.00<br>↓0                           |
| Fat jet D2 Baseline                 | $\uparrow -2.97 \\ \downarrow +2.53$   | $\uparrow -3.22 \\ \downarrow +3.10$   | $\uparrow -2.74 \\ \downarrow +3.90$     | $\uparrow -4.40 \\ \downarrow +3.86$   | -                                      | $\uparrow -2.81 \\ \downarrow +2.26$   | $\uparrow -2.28 \\ \downarrow +2.36$   | $\uparrow -2.37 \\ \downarrow +2.54$   | $\uparrow -3.52 \\ \downarrow +5.61$                        | $\uparrow -3.54 \\ \downarrow +3.18$   |
| Fat jet D2 Modelling                | $\uparrow -4.37 \\ \downarrow +4.09$   | $\uparrow -3.80 \\ \downarrow +3.93$   | $\uparrow -5.87 \\ \downarrow +6.46$     | $\uparrow -6.03 \\ \downarrow +5.08$   | -                                      | $\uparrow -3.22 \\ \downarrow +3.80$   | $\uparrow -4.07 \\ \downarrow +3.72$   | $\uparrow -3.02 \\ \downarrow +3.88$   | $\uparrow -4.77 \\ \downarrow +6.96$                        | $\uparrow -4.64 \\ \downarrow +4.56$   |
| Fat jet D2 TotalStat                | $\uparrow -0.18 \\ \downarrow +0.23$   | $\uparrow 0 \\ \downarrow +0.20$       | $\uparrow -0.11 \\ \downarrow +0.24$     | ↑0<br>↓0                               | -                                      | $\uparrow -0.12 \\ \downarrow +0.07$   | $\uparrow -0.13 \\ \downarrow +0.11$   | $\uparrow -0.19 \\ \downarrow +0.13$   | $\uparrow 0$<br>$\downarrow +0.21$                          | $\uparrow -0.88 \\ \downarrow +0.25$   |
| Fat jet D2 Tracking                 | $\uparrow -0.37 \\ \downarrow +0.46$   | $\uparrow -0.21 \\ \downarrow +0.20$   | $\uparrow -0.50 \\ \downarrow +0.59$     | ↑0<br>↓0                               | -                                      | $\uparrow -0.19 \\ \downarrow +0.13$   | $\uparrow -0.31 \\ \downarrow +0.27$   | $\uparrow -0.47 \\ \downarrow +0.46$   | ↑0<br>↓+0.97                                                | $\uparrow -0.46 \\ \downarrow +0.29$   |
| Fat jet Mass Baseline               | $\uparrow +0.66 \\ \downarrow -0.60$   | $\uparrow +8.07 \\ \downarrow -1.11$   | $\uparrow +0.72 \\ \downarrow -0.24$     | $\uparrow 0$<br>$\downarrow -1.59$     | -                                      | $\uparrow +0.14 \\ \downarrow -2.03$   | $\uparrow +0.65 \\ \downarrow -0.64$   | $\uparrow -0.23 \\ \downarrow -0.12$   | $\uparrow +1.88 \\ \downarrow +0.83$                        | $\uparrow -1.65 \\ \downarrow +3.35$   |
| Fat jet Mass Modelling              | $\uparrow +0.94 \\ \downarrow -0.94$   | $\uparrow +0.19 \\ \downarrow -1.68$   | $\uparrow +1.93 \\ \downarrow -0.69$     | $\uparrow 0$<br>$\downarrow -0.92$     | -                                      | $\uparrow +0.13 \\ \downarrow -3.20$   | $\uparrow +0.71 \\ \downarrow -1.14$   | $\uparrow -0.08 \\ \downarrow -0.59$   | $\uparrow +2.74 \\ \downarrow +0.02$                        | $\uparrow -2.20 \\ \downarrow +3.59$   |
| Fat jet Mass TotalStat              | $\uparrow -0.04 \\ \downarrow -0.02$   | ↑-0.02<br>↓0                           | ↑+0.13<br>↓0                             | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | $\uparrow +0.03 \\ \downarrow -0.02$   | ↑+0.08<br>↓0                           | $\uparrow +0.66 \\ \downarrow +0.19$                        | $\uparrow +0.85 \\ \downarrow -0.28$   |
| Fat jet Mass Tracking               | $\uparrow +0.61 \\ \downarrow -0.68$   | ↑+0.19<br>↓-1.33                       | $\uparrow +0.72 \\ \downarrow -0.12$     | $\uparrow 0$<br>$\downarrow -1.59$     | -                                      | $\uparrow +0.96 \\ \downarrow -2.04$   | $\uparrow +0.48 \\ \downarrow -0.42$   | $\uparrow +0.18 \\ \downarrow -0.22$   | $\uparrow +0.37 \\ \downarrow -1.29$                        | $\uparrow -1.88 \\ \downarrow +2.86$   |
| Fat jet pT Baseline                 | $\uparrow +1.54 \\ \downarrow -1.67$   | $\uparrow +2.01 \\ \downarrow -1.09$   | $\uparrow +1.93 \\ \downarrow -0.73$     | $\uparrow +1.31 \\ \downarrow -0.49$   |                                        | ↑+1.09<br>↓+4.84                       | $\uparrow +1.54 \\ \downarrow -2.04$   | $\uparrow +0.05 \\ \downarrow -1.10$   | $\uparrow +2.01 \\ \downarrow -0.61$                        | $\uparrow +0.68 \\ \downarrow -0.01$   |
| Fat jet pT Modelling                | $\uparrow +0.91 \\ \downarrow -0.69$   | $\uparrow +0.38 \\ \downarrow +0.04$   | $\uparrow +1.46 \\ \downarrow -0.46$     | $\uparrow +0.21 \\ \downarrow -0.49$   | -                                      | $\uparrow +0.94 \\ \downarrow -1.00$   | $\uparrow +0.45 \\ \downarrow -0.78$   | $\uparrow +0.09 \\ \downarrow -0.61$   | $\uparrow +0.92 \\ \downarrow -0.39$                        | $\uparrow -0.00 \\ \downarrow +0.15$   |
| Fat jet pT TotalStat                | $\uparrow +0.16 \\ \downarrow -0.09$   | $\uparrow +0.38 \\ \downarrow -0.21$   | ↑+0.24<br>↓0                             | ↑0<br>↓0                               | -                                      | $\uparrow +0.27 \\ \downarrow -0.67$   | $\uparrow +0.10 \\ \downarrow -0.10$   | $\uparrow +0.11 \\ \downarrow -0.07$   | $\uparrow +0.02$<br>$\downarrow 0$                          | $\uparrow -0.02 \\ \downarrow +0.12$   |
| Fat jet pT Tracking                 | $\uparrow +1.79 \\ \downarrow -1.64$   | $\uparrow +2.16 \\ \downarrow -1.88$   | $\uparrow +2.91 \\ \downarrow -1.68$     | $\uparrow +0.21 \\ \downarrow -0.49$   | -                                      | $\uparrow +1.17 \\ \downarrow -1.05$   | $\uparrow +1.25 \\ \downarrow -1.99$   | $\uparrow +0.80 \\ \downarrow -1.71$   | $\uparrow +2.39 \\ \downarrow -0.88$                        | $\uparrow +0.05 \\ \downarrow +0.48$   |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                                    | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                                    | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                                    | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                                    | $\uparrow 0$<br>$\downarrow 0$         |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$           | $\uparrow 0$<br>$\downarrow 0$         |                                        | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$         | ↑0<br>↓0                               | ↑0<br>↓0                                                    | $\uparrow 0$<br>$\downarrow 0$         |
| Modelling                           | _                                      | $\uparrow +46.35 \\ \downarrow -29.87$ | $\uparrow +26.30 \\ \downarrow -24.81$   | _                                      | -                                      | $\uparrow +25.30 \\ \downarrow -18.05$ | $\uparrow +31.42 \\ \downarrow -21.66$ | $\uparrow +31.24 \\ \downarrow -22.94$ | -                                                           | _                                      |
| Default PRW                         | $\uparrow +0.75 \\ \downarrow +0.01$   | $\uparrow -2.96 \\ \downarrow +1.16$   | $\uparrow +1.21 \\ \downarrow -3.52$     | $\uparrow +9.89 \\ \downarrow -3.97$   | -                                      | $\uparrow -4.24 \\ \downarrow +2.99$   | $\uparrow +0.27 \\ \downarrow +0.12$   | $\uparrow -1.04 \\ \downarrow +0.85$   | $\uparrow -0.62 \\ \downarrow +2.21$                        | $\uparrow +0.68 \\ \downarrow -1.29$   |
| Matrix meth. (fake rate)            | _                                      | -                                      | -                                        |                                        | $\uparrow -36.96 \\ \downarrow +20.76$ | -                                      | _                                      | -                                      | -                                                           | _                                      |
| Matrix meth. (real rate)            | _                                      | -                                      | -                                        |                                        | $\uparrow +2.75 \\ \downarrow -2.86$   | -                                      | _                                      | -                                      | -                                                           | _                                      |
| JES (Eta)                           | $\uparrow -0.27 \\ \downarrow +0.14$   | $\uparrow -1.55$<br>$\downarrow +2.58$ | $\uparrow + 0.12$<br>$\downarrow + 1.21$ | $\uparrow -0.54$<br>$\downarrow 0$     |                                        | $\uparrow -0.35 \\ \downarrow +0.14$   | $\uparrow -0.16 \\ \downarrow -0.16$   | $\uparrow -0.44$<br>$\downarrow -0.26$ | $\begin{array}{c}\uparrow+0.73\\\downarrow+0.16\end{array}$ | $\uparrow +0.14 \\ \downarrow -0.13$   |
| Jets Energy Resolution              | ↑+0.64<br>_                            | ↑+21.45<br>-                           | ↑+1.82<br>-                              | ^++1.41<br>_                           |                                        | ↑+5.68<br>-                            | ↑-1.45<br>-                            | ↑+0.98<br>-                            | ↑+0.45<br>-                                                 | ↑+0.93<br>-                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.12 \\ \downarrow -1.87$   | ↑+3.93<br>↓-1.03                       | $\uparrow +0.75 \\ \downarrow +1.89$     | $\uparrow +1.66 \\ \downarrow +0.09$   | _                                      | $\uparrow +5.73 \\ \downarrow -0.50$   | $\uparrow +1.66 \\ \downarrow -1.78$   | $\uparrow +0.11 \\ \downarrow -2.58$   | $\uparrow +1.06 \\ \downarrow -1.20$                        | $\uparrow +0.39 \\ \downarrow -0.13$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.25 \\ \downarrow -1.16$   | $\uparrow +5.80 \\ \downarrow -1.97$   | $\uparrow +1.12 \\ \downarrow +0.00$     | $\uparrow +1.32 \\ \downarrow -1.11$   | _                                      | $\uparrow +0.74 \\ \downarrow -0.99$   | $\uparrow +0.66 \\ \downarrow -1.27$   | $\uparrow -0.06 \\ \downarrow -0.73$   | $\uparrow +1.20 \\ \downarrow -1.71$                        | $\uparrow +1.01 \\ \downarrow -0.52$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.44 \\ \downarrow -0.36$   | $\uparrow -1.93 \\ \downarrow +2.64$   | $\uparrow +0.87 \\ \downarrow +0.43$     | $\uparrow 0$<br>$\downarrow -0.54$     | _                                      | $\uparrow -0.23 \\ \downarrow -0.03$   | $\uparrow -0.21 \\ \downarrow -0.36$   | $\uparrow -0.04 \\ \downarrow +0.08$   | $\uparrow +0.89 \\ \downarrow +0.18$                        | $\uparrow +0.14 \\ \downarrow -0.25$   |

Таблица К.15. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 1500                                      | 1750                                   | 2000                                   | 2250                                   | 2500                                   | 2750                                   | 3000                                   | 3250                                   | 3500                                   | 3750                                   |
|-------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                     | EL                                        | EL                                     | EL                                     | EL                                     | EL                                     | EL                                     | EL                                     | EL                                     | EL                                     | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.46$                          | ↑+1.54                                 | $\uparrow +1.46$                       | $\uparrow +1.47$                       | $\uparrow +1.44$                       | $\uparrow +1.47$                       | ↑+1.43                                 | $\uparrow +1.44$                       | ↑+1.51<br>↓ -1.51                      | $\uparrow +1.46$                       |
| Default Electron Isolation Eff      | $\uparrow +3.82$<br>$\downarrow -3.82$    | $\uparrow +3.74$<br>$\downarrow -3.74$ | $\uparrow +3.82$<br>$\downarrow -3.82$ | $\uparrow +3.75$<br>$\downarrow -3.75$ | $\uparrow +3.80$<br>$\downarrow -3.80$ | $\uparrow +3.91$<br>$\downarrow -3.91$ | $\uparrow +3.73$<br>$\downarrow -3.73$ | $\uparrow +3.99$<br>$\downarrow -3.99$ | $\uparrow +3.88$<br>$\downarrow -3.88$ | $\uparrow +3.96$<br>$\downarrow -3.96$ |
| Default Electron Reconstruction Eff | $\uparrow +0.21 \\ \downarrow -0.21$      | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.21 \\ \downarrow -0.21$   | ↑+0.23<br>↓-0.23                       | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.23 \\ \downarrow -0.23$   | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.23 \\ \downarrow -0.23$   |
| Electrons Scale                     | $\uparrow -0.21$<br>$\downarrow \pm 0.23$ | ↑-0.26<br>↓0                           | $\uparrow -0.11$                       | $\uparrow 0$                           | ↑0<br>1.0                              | $\uparrow +0.00$<br>$\downarrow +0.24$ | ↑0<br>↓0                               | $\uparrow +0.13$<br>$\downarrow -0.00$ | ↑0<br>.1.0                             | $\uparrow -0.31$<br>$\downarrow -0.34$ |
| Electrons Resolution                | $\uparrow +0.12 \\ \downarrow -0.21$      | ↑-0.13<br>↓0                           | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -0.12$     | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow +0.12$     | ↑0<br>↓0                               | ↑0<br>↓-0.00                           | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -0.19$     |
| Default Electron Trigger Eff        | $\uparrow +0.18 \\ \downarrow -0.18$      | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.18 \\ \downarrow -0.18$   | ↑+0.18<br>↓-0.18                       | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.20 \\ \downarrow -0.20$   | $\uparrow +0.19 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow +0.12 \\ \downarrow +0.12$      | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow -0.12 \\ \downarrow -0.12$   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Etmiss RES Perpendicular            | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.11 \\ \downarrow +0.11$   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Etmiss Scale                        | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑+0.11<br>↓0                           | ↑0<br>↓0                               | $\uparrow +0.11 \\ \downarrow +0.12$   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Fat jet D2 Baseline                 | $\uparrow -3.90 \\ \downarrow +4.19$      | $\uparrow -5.04 \\ \downarrow +4.68$   | $\uparrow -4.75 \\ \downarrow +7.88$   | $\uparrow -4.17 \\ \downarrow +7.47$   | $\uparrow -5.20 \\ \downarrow +5.20$   | $\uparrow -4.96 \\ \downarrow +6.50$   | $\uparrow -5.85 \\ \downarrow +7.05$   | $\uparrow -5.44 \\ \downarrow +6.82$   | $\uparrow -7.04 \\ \downarrow +8.98$   | $\uparrow -6.11 \\ \downarrow +6.94$   |
| Fat jet D2 Modelling                | $\uparrow -6.47 \\ \downarrow +4.46$      | $\uparrow -5.81 \\ \downarrow +6.12$   | $\uparrow -5.21 \\ \downarrow +8.87$   | $\uparrow -5.00 \\ \downarrow +8.15$   | $\uparrow -5.78 \\ \downarrow +5.75$   | $\uparrow -5.70 \\ \downarrow +7.69$   | $\uparrow -5.85 \\ \downarrow +7.06$   | $\uparrow -5.51 \\ \downarrow +6.23$   | $\uparrow -7.16 \\ \downarrow +9.13$   | $\uparrow -6.12 \\ \downarrow +6.24$   |
| Fat jet D2 TotalStat                | $\uparrow -0.32 \\ \downarrow +0.68$      | $\uparrow -0.71 \\ \downarrow +0.77$   | $\uparrow -1.76 \\ \downarrow +0.57$   | $\uparrow -0.83 \\ \downarrow +1.75$   | $\uparrow -2.27 \\ \downarrow +1.06$   | $\uparrow -1.44 \\ \downarrow +2.49$   | $\uparrow -2.42 \\ \downarrow +1.08$   | $\uparrow -3.46 \\ \downarrow +1.73$   | $\uparrow -4.08 \\ \downarrow +3.91$   | $\uparrow -3.83 \\ \downarrow +4.12$   |
| Fat jet D2 Tracking                 | $\uparrow -0.60 \\ \downarrow +0.59$      | $\uparrow -0.46 \\ \downarrow +0.53$   | $\uparrow -1.57 \\ \downarrow +0.32$   | $\uparrow -0.51 \\ \downarrow +0.87$   | $\uparrow -1.72 \\ \downarrow +0.84$   | $\uparrow -0.70 \\ \downarrow +1.25$   | $\uparrow -0.58 \\ \downarrow +0.73$   | $\uparrow -0.44 \\ \downarrow +0.63$   | $\uparrow -0.72 \\ \downarrow +1.78$   | $\uparrow -1.46 \\ \downarrow +1.75$   |
| Fat jet Mass Baseline               | $\uparrow +0.63$<br>$\downarrow +3.90$    | $\uparrow +2.38 \\ \downarrow +5.69$   | $\uparrow -0.64$<br>$\downarrow +0.60$ | $\uparrow +2.25 \\ \downarrow +1.78$   | $\uparrow +3.26 \\ \downarrow +1.60$   | $\uparrow +4.41 \\ \downarrow +0.57$   | $\uparrow +0.97$<br>$\downarrow -1.13$ | $\uparrow +0.67 \\ \downarrow -2.51$   | $\uparrow +8.85 \\ \downarrow +2.69$   | $\uparrow +4.10 \\ \downarrow -0.23$   |
| Fat jet Mass Modelling              | $\uparrow +2.25 \\ \downarrow +3.77$      | $\uparrow +1.65 \\ \downarrow +4.24$   | $\uparrow -1.51 \\ \downarrow -0.80$   | ↑+0.93<br>↓+0.91                       | $\uparrow +1.68 \\ \downarrow +1.34$   | $\uparrow +1.71 \\ \downarrow +0.90$   | ↑+0.44<br>↓-3.63                       | $\uparrow +0.09 \\ \downarrow -1.11$   | $\uparrow +4.66 \\ \downarrow +1.88$   | $\uparrow +2.63 \\ \downarrow -0.98$   |
| Fat jet Mass TotalStat              | $\uparrow -0.10 \\ \downarrow +1.10$      | $\uparrow +0.89 \\ \downarrow +1.62$   | $\uparrow -0.35 \\ \downarrow -0.32$   | $\uparrow +1.37 \\ \downarrow -0.48$   | $\uparrow +3.21 \\ \downarrow -1.62$   | $\uparrow +2.27 \\ \downarrow -0.41$   | $\uparrow +2.00 \\ \downarrow -3.22$   | $\uparrow +1.21 \\ \downarrow -4.49$   | $\uparrow +5.94 \\ \downarrow -1.11$   | $\uparrow +5.14 \\ \downarrow -1.37$   |
| Fat jet Mass Tracking               | $\uparrow +1.31 \\ \downarrow +2.78$      | $\uparrow +2.42 \\ \downarrow +2.13$   | $\uparrow -0.78$<br>$\downarrow -0.39$ | $\uparrow +1.45 \\ \downarrow +1.20$   | $\uparrow +1.44 \\ \downarrow +0.51$   | $\uparrow +2.41 \\ \downarrow +1.76$   | $\uparrow +1.29 \\ \downarrow -3.18$   | $\uparrow +0.57 \\ \downarrow -1.81$   | $\uparrow +4.31 \\ \downarrow +1.79$   | $\uparrow +2.62 \\ \downarrow -1.13$   |
| Fat jet pT Baseline                 | $\uparrow +0.41 \\ \downarrow +2.49$      | $\uparrow +0.16 \\ \downarrow +1.70$   | $\uparrow -1.33 \\ \downarrow -1.20$   | $\uparrow +0.57 \\ \downarrow +0.82$   | $\uparrow -0.51 \\ \downarrow +0.09$   | $\uparrow -1.80 \\ \downarrow +1.72$   | $\uparrow -2.18 \\ \downarrow +1.49$   | $\uparrow -2.53 \\ \downarrow +1.93$   | ↑+0.30<br>↓+3.22                       | $\uparrow -1.75 \\ \downarrow +3.93$   |
| Fat jet pT Modelling                | $\uparrow +0.28 \\ \downarrow +0.12$      | ↑0<br>↓+0.01                           | $\uparrow -0.53$<br>$\downarrow -1.01$ | ↑+0.34<br>↓-0.13                       | $\uparrow -0.40 \\ \downarrow -0.37$   | $\uparrow +0.04 \\ \downarrow +1.02$   | $\uparrow -1.91 \\ \downarrow +0.82$   | $\uparrow -0.19 \\ \downarrow +1.09$   | $\uparrow -0.27 \\ \downarrow +0.60$   | $\uparrow -0.55 \\ \downarrow +0.63$   |
| Fat jet pT TotalStat                | $\uparrow -0.25 \\ \downarrow +0.19$      | $\uparrow +0.29 \\ \downarrow +0.26$   | $\uparrow -0.90 \\ \downarrow -0.53$   | $\uparrow -0.59 \\ \downarrow -0.04$   | $\uparrow +0.05 \\ \downarrow -0.40$   | $\uparrow -0.20 \\ \downarrow +0.36$   | $\uparrow -2.02 \\ \downarrow +1.75$   | $\uparrow -0.59 \\ \downarrow +1.22$   | $\uparrow -0.53 \\ \downarrow +2.78$   | $\uparrow -1.39 \\ \downarrow +2.13$   |
| Fat jet pT Tracking                 | $\uparrow +0.39 \\ \downarrow +1.31$      | $\uparrow +0.45 \\ \downarrow +0.05$   | $\uparrow -0.76 \\ \downarrow -0.97$   | $\uparrow +0.42 \\ \downarrow +0.23$   | $\uparrow +0.09 \\ \downarrow -0.72$   | $\uparrow +0.23 \\ \downarrow +1.27$   | $\uparrow -2.25 \\ \downarrow +1.60$   | $\uparrow -1.59 \\ \downarrow +1.68$   | $\uparrow +0.65 \\ \downarrow +1.93$   | $\uparrow -0.46 \\ \downarrow +1.56$   |
| Muons ID                            | ↑0<br>↓0                                  | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                                  | $\uparrow +0.13 \\ \downarrow +0.13$   | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Default PRW                         | $\uparrow -0.29 \\ \downarrow +1.18$      | $\uparrow -2.87 \\ \downarrow +0.85$   | $\uparrow +1.54 \\ \downarrow -0.01$   | $\uparrow -5.48 \\ \downarrow +3.85$   | $\uparrow -0.26 \\ \downarrow +0.39$   | $\uparrow -0.12 \\ \downarrow +0.16$   | $\uparrow -2.99 \\ \downarrow +2.69$   | $\uparrow -0.32 \\ \downarrow -0.21$   | $\uparrow -0.18 \\ \downarrow -1.16$   | $\uparrow -3.02 \\ \downarrow +2.06$   |
| JES (Eta)                           | $\uparrow -0.09 \\ \downarrow +0.13$      | ↑+0.01<br>↓0                           | ↑-0.11<br>↓0                           | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.11 \\ \downarrow +0.12$   | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$         |
| Jets Energy Resolution              | ^++0.57<br>_                              | ++0.00<br>-                            | ↑-0.16<br>-                            | ↑-0.06<br>-                            |                                        | ↑+0.13<br>-                            | ^++0.55<br>-                           | ^++0.36<br>                            | ^++0.30<br>-                           | ^++0.08<br>_                           |
| JES (In-situ analyses - N.P.1)      | $\uparrow +0.88 \\ \downarrow +0.04$      | $\uparrow +0.13 \\ \downarrow -0.15$   | $\uparrow -0.11 \\ \downarrow -0.12$   | $\uparrow +0.11 \\ \downarrow -0.24$   | $\uparrow +0.00 \\ \downarrow +0.06$   | $\uparrow +0.36 \\ \downarrow +0.17$   | ↑+0.18<br>↓0                           | ↑0<br>↓+0.13                           | $\uparrow +0.25 \\ \downarrow +0.45$   | $\uparrow -0.10 \\ \downarrow -0.31$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.48 \\ \downarrow -0.32$      | $\uparrow +0.25 \\ \downarrow -0.37$   | $\uparrow -0.01 \\ \downarrow -0.11$   | $\uparrow +0.11 \\ \downarrow -0.12$   | $\uparrow 0$<br>$\downarrow -0.12$     | ↑+0.36<br>↓0                           | ↑+0.18<br>↓0                           | ↑+0.12<br>↓0                           | ↑0<br>↓0                               | ↑0<br>↓0                               |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.23 \\ \downarrow -0.11$      | $\uparrow +0.25 \\ \downarrow -0.26$   | $\uparrow -0.11 \\ \downarrow -0.11$   | $\uparrow 0$<br>$\downarrow -0.37$     | <br>↓0                                 | ↑+0.36<br>↓0                           | ↑+0.18<br>↓0                           |                                        | ↑0<br>↓0                               | ↑+0.11<br>↓0                           |

Таблица К.16. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в WCR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 00                                     |
|-------------------------------------|----------------------------------------|
|                                     | 40                                     |
|                                     | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.45 \\ \downarrow -1.45$   |
| Default Electron Isolation Eff      | $\uparrow +3.92 \\ \downarrow -3.92$   |
| Default Electron Reconstruction Eff | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | ↑0<br>↓-0.00                           |
| Electrons Resolution                | ↑0<br>↓0                               |
| Default Electron Trigger Eff        | $\uparrow +0.18 \\ \downarrow -0.18$   |
| Etmiss RES Parallel                 | ^0<br>⊥0                               |
| Etmiss RES Perpendicular            | 0↑<br>↓0                               |
| Etmiss Scale                        | 0↑<br>↓0                               |
| Fat jet D2 Baseline                 | $\uparrow -6.19 \\ \downarrow +6.45$   |
| Fat jet D2 Modelling                | $\uparrow -5.53$<br>$\downarrow +6.25$ |
| Fat jet D2 TotalStat                | $\uparrow -3.86$                       |
| Fat jet D2 Tracking                 | $\uparrow -0.73$<br>+0.81              |
| Fat jet Mass Baseline               | $\uparrow +9.11$<br>$\downarrow -3.37$ |
| Fat jet Mass Modelling              | ↑+2.67                                 |
| Fat jet Mass TotalStat              | $\uparrow +9.02 \\ \downarrow -4.36$   |
| Fat jet Mass Tracking               | $\uparrow +3.21 \\ \downarrow -0.48$   |
| Fat jet pT Baseline                 | $\uparrow -2.62 \\ \downarrow +4.78$   |
| Fat jet pT Modelling                | $\uparrow -0.93 \\ \downarrow +2.53$   |
| Fat jet pT TotalStat                | $\uparrow -2.24 \\ \downarrow +3.70$   |
| Fat jet pT Tracking                 | $\uparrow -1.96 \\ \downarrow +3.04$   |
| Muons ID                            | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               |
| Default PRW                         | $\uparrow -2.09 \\ \downarrow +2.64$   |
| JES (Eta)                           | $\uparrow 0 \\ \downarrow 0$           |
| Jets Energy Resolution              | ↑0<br>_                                |
| JES (In-situ analyses - N.P.1)      | $\uparrow 0$<br>$\downarrow 0$         |
| JES (In-situ analyses - N.P.2)      | $\uparrow 0$<br>$\downarrow -0.12$     |
| JES (In-situ analyses - N.P.3)      | ↑0<br>↓0                               |

Таблица К.17. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR1 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                               |                                          |                                         | d,                                      | . 11                                                                |                                         |
|-------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------|-----------------------------------------|
|                                           | + e1                                          | ↑<br>*                                   |                                         | let                                     | ↑<br>*                                                              | 0100                                    |
|                                           |                                               |                                          | 4                                       | guing                                   | 1/2                                                                 | E C                                     |
|                                           | ↑+1.83                                        | ↑+3.10                                   | ↔<br>↑+3.29                             | ∽<br>^+3.17                             | ↑0                                                                  | ±<br>↑+1.26                             |
| B-jet0 Eff (B filter)                     | $\downarrow -1.83$<br>$\uparrow +12.38$       | $\downarrow -3.10$<br>$\uparrow 0$       | $\downarrow -3.29$<br>$\uparrow +1.48$  | $\downarrow -3.17$<br>$\uparrow 0$      | ↓0<br>↑+32.02                                                       | $\downarrow -1.26$<br>$\uparrow +17.15$ |
| B-jet0 Eff (C filter)                     | $\downarrow -12.38$<br>$\uparrow \pm 0.96$    | ↓0<br>↑+0.46                             | $\downarrow -1.48$<br>$\uparrow +0.99$  | <u>↓0</u><br>↑0                         | $\downarrow -32.02$                                                 | $\downarrow -17.15$<br>$\uparrow +4.64$ |
| B-jet0 Eff Extention                      | $\downarrow -0.96$                            | $\downarrow -0.46$                       | $\downarrow -0.99$                      |                                         | $\downarrow 0$<br>$\uparrow \pm 23.00$                              | $\downarrow -4.64$                      |
| B-jet0 Eff Extention (C filter)           |                                               |                                          | $\downarrow -0.65$                      |                                         | $\downarrow -23.00$                                                 |                                         |
| B-jet0 Eff (Light filter)                 | 10<br>10                                      | ↓0<br>↓0                                 |                                         |                                         | 10<br>10                                                            |                                         |
| B-jet1 Eff (B filter)                     | $\downarrow -4.56$                            | $\downarrow -3.15$                       | $\downarrow -3.13$                      | $\downarrow -2.76$                      | $\downarrow -8.67$                                                  | $\downarrow -6.33$                      |
| B-jet1 Eff (C filter)                     | $\downarrow -7.80$<br>$\downarrow -7.80$      | $\downarrow -2.13$<br>$\downarrow -2.13$ | 1+0.42<br>$\downarrow -0.42$            | 10<br>10                                | 10<br>10                                                            | 10<br>10                                |
| B-jet1 Eff Extention                      | ↑0<br>↓0                                      | ↑0<br>↓0                                 | $\uparrow +0.20$<br>$\downarrow -0.20$  | ↑0<br>↓0                                | ↑0<br>↓0                                                            | $\uparrow +0.81$<br>$\downarrow -0.81$  |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| B-jet1 Eff (Light filter)                 | ↑0<br>↓0                                      | $\uparrow +1.98 \\ \downarrow -1.98$     | $\uparrow +1.23 \\ \downarrow -1.23$    | ↑0<br>↓0                                | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| $t\bar{t}$ CR Electron Identification Eff | $\uparrow +1.97 \\ \downarrow -1.97$          | $\uparrow +1.70 \\ \downarrow -1.70$     | $\uparrow +1.18 \\ \downarrow -1.18$    | $\uparrow +0.88 \\ \downarrow -0.88$    | $\uparrow +1.70 \\ \downarrow -1.70$                                | $\uparrow +0.83 \\ \downarrow -0.83$    |
| $t\bar{t}$ CR Electron Isolation Eff      | $\uparrow +1.36 \\ \downarrow -1.36$          | $\uparrow +1.53 \\ \downarrow -1.53$     | $\uparrow +1.14 \\ \downarrow -1.14$    | $\uparrow +1.03 \\ \downarrow -1.03$    | $\uparrow +2.00 \\ \downarrow -2.00$                                | $\uparrow +2.51 \\ \downarrow -2.51$    |
| $t\bar{t}$ CR Electron Reconstruction Eff | $\uparrow +0.19 \\ \downarrow -0.19$          | $\uparrow +0.23 \\ \downarrow -0.23$     | $\uparrow +0.20 \\ \downarrow -0.20$    | $\uparrow +0.11 \\ \downarrow -0.11$    | $\uparrow +0.24 \\ \downarrow -0.24$                                | $\uparrow +0.33 \\ \downarrow -0.33$    |
| Electrons Scale                           | $\uparrow +28.15 \\ \downarrow -3.12$         | $\uparrow +29.54 \\ \downarrow -12.61$   | $\uparrow +1.34 \\ \downarrow -2.32$    | ↑0<br>↓0                                | $\uparrow 0$<br>$\downarrow -100.00$                                | $\uparrow +13.42 \\ \downarrow 0$       |
| Electrons Resolution                      | ↑0<br>↓0                                      | ↑+23.68<br>↓0                            | $\uparrow +1.21 \\ \downarrow -1.13$    | ↑0<br>↓0                                | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| $t\bar{t}$ CR Electron Trigger Eff        | $\uparrow +0.20$<br>$\downarrow -0.20$        | $\uparrow +0.21$<br>$\downarrow -0.21$   | $\uparrow +0.16$                        | $\uparrow +0.13$<br>$\downarrow -0.13$  | ↑+0.18<br>↓-0.18                                                    | $\uparrow +0.32$<br>$\downarrow -0.32$  |
| Etmiss RES Parallel                       | $\uparrow -28.62$<br>$\downarrow -28.62$      | $\uparrow +11.74$<br>$\downarrow +11.74$ | $\uparrow -2.98$                        | ↑0<br>↓0                                | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| Etmiss RES Perpendicular                  | ↑-5.91                                        | ↑0<br>↓0                                 | ↑-3.59                                  | ↑0<br>↓0                                | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| Etmiss Scale                              | $\uparrow -5.91$                              | ↑0<br>↓↓ 20.54                           | ↑-2.07                                  | ↑0<br>↓0                                | ↑0<br>↓ 100.00                                                      | ↑0<br>↓0                                |
| Fat jet D2 Baseline                       | ↑-2.79                                        | ↑0<br>↓↓7.24                             | $\uparrow -2.38$                        | ↑0<br>↓↓57.08                           | ↑0<br>↓0                                                            | ↑0<br>↓0                                |
| Fat jet D2 Modelling                      | ↑-5.84                                        | $\uparrow 0$                             | $\uparrow -3.63$                        | ↑0<br>↓↓57.08                           | ↑0<br>↓0                                                            | ↑0<br>10                                |
| Fat jet D2 TotalStat                      | <u>↓0</u>                                     | <u>↓+7.34</u><br>↑0                      | ↑0<br>10                                | ↑0<br>↓↓57.98                           | 10<br>10                                                            | ↑0<br>10                                |
| Fat jet D2 Tracking                       | ↓0<br>↑0                                      | ↑0<br>↑0                                 | 1 10                                    | ↓+57.98<br>↑0                           | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet Mass Baseline                     | ↓0<br>↑-32.94                                 | $\uparrow +2.47$<br>$\uparrow -5.02$     | 1 1 0                                   | $\uparrow +57.98$<br>$\uparrow -50.98$  | 10<br>10                                                            | ↓0<br>↑0                                |
| Fat jet Mass Modelling                    | $\uparrow +29.12$<br>$\uparrow -32.94$        | 1-5.78<br>$\uparrow+0.96$                | $\uparrow -1.30$<br>$\uparrow -1.34$    | $\uparrow +106.01$<br>$\uparrow -50.98$ | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet Mass TotalStat                    | <u>↓0</u><br>↑0                               | ↓+1.38<br>↑0                             | $\uparrow 0$                            | $\uparrow 0$                            | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet Mass Tracking                     | $\uparrow -32.94$                             | ↓0<br>↑0                                 | $\uparrow -0.02$<br>$\uparrow -0.35$    | $\uparrow -50.98$                       | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet nT Baseline                       | <u>↓0</u><br>↑0                               | $\downarrow 0$<br>$\uparrow +14.90$      | $\downarrow +0.39$<br>$\uparrow +13.61$ | $\downarrow 0$<br>$\uparrow +118.36$    | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet pT Modelling                      | ↓0<br>↑0                                      | $\downarrow -6.66$<br>$\uparrow 0$       | $\downarrow -7.20$<br>$\uparrow +6.04$  | $\downarrow 0$<br>$\uparrow +57.98$     | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet pT modelling                      | ↓0<br>↑0                                      | ↓0<br>↑0                                 | $\downarrow -1.78$<br>$\uparrow +0.42$  | ↓0<br>↑0                                | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
|                                           | ↓0<br>↑0                                      | $\downarrow 0$<br>$\uparrow +2.47$       | $\downarrow 0$<br>$\uparrow +6.44$      | $\downarrow 0$<br>$\uparrow +57.98$     | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Fat jet p1 Tracking                       | ↓0<br>↑0                                      | ↓0<br>↑0                                 | ↓ <u>-3.39</u><br>↑0                    | ↓0<br>                                  | <u>↓</u> 0<br>↑0                                                    | ↓0<br>↑0                                |
| Muons ID                                  | ↓0<br>↑0                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Muons MS                                  | ↓0<br>↑0                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                                            | ↓0<br>↑0                                |
| Muons Sagitta RES                         | ↓0<br>↑0                                      | ↓0<br>10                                 | <u>↓0</u><br>10                         | ↓0<br>10                                | ↓0<br>±0                                                            | ↓0<br>↑0                                |
| Muons Sagitta RHO                         |                                               | ↓0<br>↓0                                 |                                         |                                         |                                                                     |                                         |
| Muons Scale                               | ↓0<br>↓0                                      | ↓0<br>↓0                                 | 10                                      | 10                                      | ↓0<br>↓0                                                            | 10                                      |
| Modelling                                 | $\downarrow -19.61$                           | $\downarrow -24.56$                      | _                                       | -                                       | $\downarrow -31.25$                                                 | -                                       |
| $t\bar{t}$ CR PRW                         | $\downarrow^{+12.18}$<br>$\downarrow^{+3.27}$ | 1 - 5.41<br>1 + 7.82                     | 1 - 2.64<br>$\downarrow + 1.71$         | 1+1.47<br>1-5.39                        | 10.57<br>1-7.00                                                     | 1-20.91<br>$\downarrow +12.75$          |
| JES (Eta)                                 | $\uparrow +28.15 \\ \downarrow +0.00$         | ↑+5.90<br>↓+0.01                         | $\uparrow -0.92$<br>$\downarrow +1.51$  | $\uparrow +0.02 \\ \downarrow +17.29$   | $\uparrow -0.00 \\ \downarrow +0.00$                                | ↑+0.07<br>↓+0.00                        |
| Jets Energy Resolution                    | ↑-6.47<br>_                                   | T+18.87<br>-                             | T+0.55<br>-                             | ↑+17.56<br>-                            | T+1.08<br>-                                                         | T+13.13<br>-                            |
| JES (In-situ analyses - N.P.1)            | $\uparrow -3.18 \\ \downarrow +25.23$         | $\uparrow -5.70 \\ \downarrow +20.98$    | $\uparrow -3.13 \\ \downarrow +0.94$    | $\uparrow +17.16 \\ \downarrow +0.13$   | $\uparrow -100.00 \\ \downarrow +0.36$                              | $\uparrow +0.07 \\ \downarrow +13.44$   |
| JES (In-situ analyses - N.P.2)            | $\uparrow +0.01 \\ \downarrow +0.07$          | $\uparrow -0.02 \\ \downarrow +11.83$    | $\uparrow -1.19 \\ \downarrow +1.54$    | $\uparrow 0$<br>$\downarrow +0.02$      | $ \begin{array}{c} \uparrow -0.27 \\ \downarrow +0.00 \end{array} $ | $\uparrow +0.00 \\ \downarrow +13.50$   |
| JES (In-situ analyses - N.P.3)            | $\uparrow +25.37$<br>$\downarrow -3.06$       | $\uparrow +5.88 \\ \downarrow +5.90$     | $\uparrow -0.51$<br>$\downarrow -1.16$  | $\uparrow 0$<br>$\downarrow +0.02$      | $\uparrow -0.28 \\ \downarrow -0.09$                                | $\uparrow 0$<br>$\downarrow +0.07$      |

Таблица К.18. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR2 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                           | ee                                      |                                          | d                                       |                                         | 77                                     |                                         |
|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|
|                                           | eи                                        | ↑                                       |                                          | e to                                    |                                         | 1                                      | 000                                     |
|                                           | 1                                         | *~                                      |                                          | ngle                                    | ke                                      | *~                                     | 0                                       |
|                                           | М                                         | Ż                                       | tt                                       | Sii                                     | Fa                                      | Ň                                      | EI                                      |
| B-jet0 Eff (B filter)                     | $\uparrow +2.26 \\ \downarrow -2.26$      | $\uparrow +3.15 \\ \downarrow -3.15$    | $\uparrow +3.17 \\ \downarrow -3.17$     | $\uparrow +3.20 \\ \downarrow -3.20$    | _                                       | $\uparrow +2.61 \\ \downarrow -2.61$   | $\uparrow +1.47 \\ \downarrow -1.47$    |
| B-jet0 Eff (C filter)                     | $\uparrow +0.79 \\ \downarrow -0.79$      | $\uparrow +1.19 \\ \downarrow -1.19$    | $\uparrow +1.39 \\ \downarrow -1.39$     | ↑0<br>↓0                                | _                                       | $\uparrow +6.53 \\ \downarrow -6.53$   | $\uparrow +24.72 \\ \downarrow -24.72$  |
| B-jet0 Eff Extention                      | $\uparrow +0.08 \\ \downarrow -0.08$      | $\uparrow +0.44 \\ \downarrow -0.44$    | $\uparrow +0.78 \\ \downarrow -0.78$     | $\uparrow +0.52 \\ \downarrow -0.52$    | _                                       | ↑0<br>↓0                               | $\uparrow +4.67 \\ \downarrow -4.67$    |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                  | <br>↓0                                  | $\uparrow +0.62$<br>$\downarrow -0.62$   | 10<br>↓0                                | _                                       | $\uparrow +4.69$<br>$\downarrow -4.69$ | 10<br>↓0                                |
| B-jet0 Eff (Light filter)                 | ↑0<br>↓0                                  | ↑0<br>↓0                                | $\uparrow +0.17$<br>$\downarrow -0.17$   | 0↑<br>10                                | _                                       | 0↑<br>10                               | 0↑<br>10                                |
| B-jet1 Eff (B filter)                     | $\uparrow +0.56$<br>$\downarrow -0.56$    | $\uparrow +3.02$<br>$\downarrow -3.02$  | ↑+3.06<br>↓-3.06                         | $\uparrow +4.30$<br>$\downarrow -4.30$  | _                                       | ↑+8.05                                 | ↑+3.06<br>↓-3.06                        |
| B-jet1 Eff (C filter)                     | ↑+19.59<br>↓-19.59                        | ↑+2.22<br>↓-2.22                        | $\uparrow +0.55$                         | ↑0<br>↓0                                | -                                       | ↑0<br>↓0                               | ↑+10.18<br>↓-10.18                      |
| B-jet1 Eff Extention                      | ↑+0.01                                    | ↑0<br>↓0                                | ↑+0.06                                   | ↑+0.21                                  | _                                       | ↑0<br>↓0                               | $\uparrow +0.53$                        |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                  | ↑0<br>0                                 | ↑+0.13<br>↓ 0.12                         | ↑0<br>↓0                                | _                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| B-jet1 Eff (Light filter)                 | ↑0                                        | ↑+2.64                                  | ↑+0.84                                   | ↑0<br>↓0                                | -                                       | ↑0<br>↓0                               | +9.99                                   |
| $t\bar{t}$ CR Electron Identification Eff | ↑+1.40                                    | ↑+1.49                                  | ↑+1.15                                   | ↑+1.02                                  | _                                       | ↑+0.62                                 | ↑+1.53                                  |
| $t\bar{t}$ CR Electron Isolation Eff      | ↓-1.40<br>↑+0.32                          | ↓-1.49<br>↑+0.91                        | $\uparrow +0.93$                         | $\uparrow +0.44$                        | -                                       | $\uparrow +0.62$<br>$\uparrow +0.45$   | $\uparrow +4.14$                        |
| $t\bar{t}$ CB Electron Beconstruction Eff | $\uparrow +0.32$<br>$\uparrow +0.25$      | $\uparrow +0.91$<br>$\uparrow +0.23$    | $\uparrow +0.93$<br>$\uparrow +0.20$     | $\uparrow +0.44$<br>$\uparrow +0.15$    | -                                       | $\uparrow +0.45$<br>$\uparrow +0.12$   | $\uparrow +0.20$                        |
| Electrons Scale                           | $\downarrow -0.25$<br>$\uparrow +1.66$    | $\uparrow 0$                            | $\uparrow +1.52$                         | $\uparrow +2.78$                        | -                                       | $\uparrow 0$                           | $\uparrow 0.20$<br>$\uparrow 0$         |
| Electrons Besolution                      | $\downarrow 0$<br>$\uparrow +1.66$        | $\downarrow -0.25$<br>$\uparrow 0$      | $\downarrow -1.54$<br>$\uparrow +0.94$   | ↓0<br>↑0                                | -                                       | ↓0<br>↑0                               | ↓0<br>↑0                                |
| t CR Electron Trianer Eff                 | $\downarrow 0$<br>$\uparrow +0.24$        | $\downarrow 0$<br>$\uparrow +0.21$      | $\downarrow -0.28$<br>$\uparrow +0.17$   | $\downarrow +2.78$<br>$\uparrow +0.14$  | -                                       | ↓0<br>↑+0.08                           | $\downarrow 0$<br>$\uparrow +0.16$      |
|                                           | $\downarrow -0.24$<br>$\uparrow -1.82$    | $\downarrow -0.21$<br>$\uparrow -3.17$  | $\downarrow -0.17$<br>$\uparrow -2.79$   | $\downarrow -0.14$<br>$\uparrow 0$      | -                                       | ↓-0.08<br>↑0                           | $\downarrow -0.16$<br>$\uparrow 0$      |
| Etmiss RES Parallel                       | $\downarrow -1.82$<br>$\uparrow +1.48$    | $\downarrow -3.17$<br>$\uparrow +1.47$  | $\downarrow -2.79$<br>$\uparrow -1.44$   | $\downarrow 0$<br>$\uparrow +2.78$      | -                                       | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Etmiss RES Perpendicular                  | $\downarrow +1.48$<br>$\uparrow -0.18$    | $\downarrow +1.47$ $\uparrow 0$         | 1.44                                     | +2.78                                   |                                         | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Etmiss Scale                              | $\downarrow +1.66$<br>$\uparrow -0.38$    | $\downarrow 0$<br>$\uparrow -4.73$      | $\downarrow +2.82$                       | $\downarrow +2.78$                      | -                                       | ↓0<br>±0                               | ↓0<br>↑0                                |
| Fat jet D2 Baseline                       | $\downarrow +0.36$<br>$\uparrow 0.57$     | $\downarrow +2.58$                      | $\downarrow +1.64$                       | $\downarrow +9.33$                      | -                                       |                                        | $\downarrow +7.74$                      |
| Fat jet D2 Modelling                      | ↓+0.36                                    | $\downarrow +2.64$                      | $\downarrow +1.94$                       | ↓+9.33                                  |                                         |                                        | $\downarrow +7.74$                      |
| Fat jet D2 TotalStat                      |                                           |                                         | ↓+0.32                                   | ↓+9.33                                  | _                                       | ↓0                                     | 10<br>10                                |
| Fat jet D2 Tracking                       | $\uparrow -0.20 \\ \downarrow +0.36$      | $\uparrow 0 \\ \downarrow +2.58$        | $\uparrow -0.31$<br>$\downarrow +0.32$   | $\uparrow 0 \\ \downarrow +9.33$        | _                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet Mass Baseline                     | $\uparrow -2.29 \\ \downarrow -0.24$      | $\uparrow +16.05 \\ \downarrow -8.73$   | $\uparrow +2.53 \\ \downarrow -0.57$     | $\uparrow -19.36 \\ \downarrow +25.41$  | _                                       | ↑0<br>↓0                               | $\uparrow -9.02 \\ \downarrow -20.48$   |
| Fat jet Mass Modelling                    | $\uparrow -2.09 \\ \downarrow -2.09$      | $\uparrow +9.28 \\ \downarrow -8.73$    | $\uparrow +0.72 \\ \downarrow +1.30$     | $\uparrow -8.20 \\ \downarrow +8.56$    | _                                       | ↑0<br>↓0                               | $\uparrow -9.02 \\ \downarrow -20.48$   |
| Fat jet Mass TotalStat                    | ↑0<br>↓0                                  | ↑0<br>↓0                                | $\uparrow +0.03 \\ \downarrow +1.21$     | ↑0<br>↓0                                | _                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet Mass Tracking                     | ↑-2.09<br>↓0                              | $\uparrow + 9.06 \\ \downarrow 0$       | $\uparrow +1.07 \\ \downarrow +1.88$     | ↑-8.20<br>↓0                            | _                                       | ↑0<br>↓0                               | $\uparrow -9.02 \\ \downarrow -12.52$   |
| Fat jet pT Baseline                       | $\uparrow +9.61$<br>$\downarrow -0.20$    | $\uparrow +13.98$<br>$\bot -10.13$      | $\uparrow +17.82$<br>$\downarrow -10.23$ | $\uparrow +19.05 \\ \bot -21.92$        | _                                       | 0↑<br>0⊥                               | $\uparrow 0$<br>$\downarrow -7.96$      |
| Fat jet pT Modelling                      | ↑0<br>↓ -0.20                             | ↑0<br>↓0                                | ↑+8.41<br>↓-2.12                         | ↑+9.33                                  | -                                       | 10<br>10                               | ↑0<br>↓0                                |
| Fat jet pT TotalStat                      | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑+0.90                                   | ↑0<br>1.0                               | -                                       | 0↑<br>10                               | 0↑<br>10                                |
| Fat jet pT Tracking                       | ↑+0.36<br>↓-0.20                          | ↑+2.58                                  | $\uparrow +8.72$<br>$\downarrow -2.52$   | ↑+9.33<br>↓-10.76                       |                                         | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Muons ID                                  | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                 | ↑0<br>↓0                                | _                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Muons MS                                  | ↑0<br>↓0                                  | ↑0<br>↓0                                | ↑0<br>↓0                                 | ↑0<br>↓0                                | _                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Muons Sagitta RES                         | ↑0<br>↓0                                  | ↑0<br>                                  | ↑0<br>↓0                                 | ↑0<br>↓0                                | -                                       | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Muons Sagitta RHO                         | <br>↑0                                    | <br>↑0                                  | <u>↓0</u><br>↑0                          | ↑0<br>↓0                                |                                         | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Muons Scale                               | ±0<br>↑0                                  | ±0<br>↑0                                | ±0<br>↑0                                 | ±0<br>↑0                                | _                                       | ↑0<br>10                               | ±0<br>↑0                                |
| Modelling                                 | ↓0<br>↑+14.17                             | ↑+33.33                                 |                                          | -<br>+0                                 | _                                       | ↑+59.22                                | -<br>+0                                 |
| tī CB PBW                                 | $\downarrow -13.45$<br>$\uparrow +104.21$ | $\uparrow -3.95$                        |                                          |                                         | -                                       | $\uparrow -34.14$<br>$\uparrow +1.82$  |                                         |
| Matrix meth. (fake rate)                  | $\downarrow -31.66$<br>-                  | ↓+7.73<br>-                             | $\downarrow -1.15$<br>-                  | $\downarrow +10.15$<br>-                | ^-35.29                                 | $\downarrow -15.45$<br>-               | ↓+11.88<br>-                            |
| Matrix meth (real rate)                   | -                                         |                                         |                                          |                                         | $\downarrow +35.21$<br>$\uparrow +4.21$ |                                        |                                         |
| IFS (Eta)                                 | _<br>↑+0.00                               | _<br>↑+0.03                             |                                          |                                         | ↓-4.33                                  |                                        | _<br>↑+0.01                             |
| Jota Eporgy Dosolution                    | $\downarrow +1.66 \\ \uparrow -0.23$      | $\downarrow +0.00$<br>$\uparrow +15.58$ | $\downarrow +1.30$<br>$\uparrow +0.70$   | $\downarrow +2.77$<br>$\uparrow +19.83$ |                                         | ↓+0.00<br>↑+84.87                      | $\downarrow +0.00$<br>$\uparrow -17.70$ |
| JELS Energy Resolution                    |                                           |                                         |                                          |                                         |                                         |                                        |                                         |
| JEG (In-situ analyses - N.P.1)            | $\downarrow +1.55$<br>$\uparrow +0.00$    | $\downarrow -18.70$<br>$\uparrow -0.02$ | $\downarrow -2.56$<br>$\uparrow +0.33$   | 1 - 9.58<br>1 - 0.00                    |                                         | $\downarrow +0.02$<br>$\uparrow -0.06$ | $\downarrow +0.14$<br>$\uparrow -9.55$  |
| JES (In-situ analyses - N.P.2)            | +0.01<br>$\uparrow -0.18$                 | ↓+0.06                                  | +0.18<br>$\uparrow -0.84$                | +2.78                                   | -                                       | ↓+0.00                                 | +0.01<br>$\uparrow -0.02$               |
| JES (In-situ analyses - N.P.3)            | $\downarrow +1.67$                        | $\downarrow -5.65$                      | $\downarrow -1.89$                       | ↓+0.00                                  | _                                       | $\downarrow -0.02$                     | ↓-0.00                                  |

Таблица К.19. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR3 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                         | e                                       |                                         | d                                         |                                        | 77                                       |                                          |
|-------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|
|                                           | ev                                      | ↑                                       |                                         | e to                                      |                                        | ↑                                        | 000                                      |
|                                           | ↑                                       | *~                                      |                                         | ngle                                      | ke                                     | *~                                       | 0 03                                     |
|                                           | М                                       | Ż                                       | tt                                      | Sii                                       | Fa                                     | Ň                                        | EI                                       |
| B-jet0 Eff (B filter)                     | $\uparrow +2.29 \\ \downarrow -2.29$    | $\uparrow +3.04 \\ \downarrow -3.04$    | $\uparrow +3.08 \\ \downarrow -3.08$    | $\uparrow +3.30 \\ \downarrow -3.30$      | _                                      | $\uparrow +3.28 \\ \downarrow -3.28$     | $\uparrow +0.45 \\ \downarrow -0.45$     |
| B-jet0 Eff (C filter)                     | $\uparrow +0.72$<br>$\downarrow -0.72$  | $\uparrow +0.96$<br>$\downarrow -0.96$  | ↑+1.39<br>↓-1.39                        | <br>↓0                                    |                                        | $\uparrow +2.63 \\ \downarrow -2.63$     | $\uparrow +16.54$<br>$\downarrow -16.54$ |
| B-jet0 Eff Extention                      | ↑+0.08<br>↓-0.08                        | $\uparrow +0.36$<br>$\downarrow -0.36$  | $\uparrow +0.67$<br>$\downarrow -0.67$  | $\uparrow +0.59$<br>$\downarrow -0.59$    |                                        | $\uparrow +0.71$<br>$\downarrow -0.71$   | ↑+1.31<br>↓-1.31                         |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑+0.50<br>↓ 0.50                        | ↑0<br>↓0                                  |                                        | ↑+1.89                                   | ↑0<br>↓0                                 |
| B-jet0 Eff (Light filter)                 | <br>↑0                                  | <u>+0</u><br>↑0                         | ↑+0.23                                  | <br>↑0                                    | _                                      | <u>↓</u> -1.35<br>↑0                     | ↑+7.37                                   |
| B-iet1 Eff (B filter)                     | ↑+0.77                                  | ↑+2.85                                  | ↓ <u>-0.23</u><br>↑+3.10                | +3.30                                     |                                        | ↑+6.38                                   | ↑+2.30                                   |
| B-iet1 Eff (C filter)                     | $\uparrow +18.04$                       | $\uparrow +1.79$                        | $\uparrow +0.75$                        | $\uparrow +1.07$                          |                                        | <u>↓-6.38</u><br>↑0                      | $\uparrow +7.28$                         |
| B-iet1 Eff Extention                      | $\uparrow +0.01$                        | ↓-1.79<br>↑0                            | 1-0.75<br>$\uparrow+0.05$               | $\uparrow +0.11$                          | -                                      | ↓0<br>↑0                                 | $\uparrow -7.28$<br>$\uparrow +0.48$     |
| B jet1 Eff Extention (C filter)           | $\uparrow 0.01$                         | ↓0<br>↑0                                | $\downarrow -0.05$<br>$\uparrow +0.16$  | $\uparrow 0.11$                           | -                                      | ↓0<br>↑0                                 | $\downarrow -0.48$<br>$\uparrow 0$       |
| D :=+1 Eff (I :=++ fit==)                 | ↓0<br>↑0                                | $\downarrow 0$<br>$\uparrow +2.13$      | $\downarrow -0.16$<br>$\uparrow +0.76$  | ↓0<br>↑0                                  | -                                      | ↓0<br>↑0                                 | $\downarrow 0$<br>$\uparrow +10.95$      |
| E-jeti Eli (Light Inter)                  | $\downarrow 0$<br>$\uparrow +1.38$      | $\downarrow -2.13$<br>$\uparrow +1.47$  | $\downarrow -0.76$<br>$\uparrow +1.14$  | ↓0<br>↑+1.04                              | -                                      | ↓0<br>↑+0.73                             | $\downarrow -10.95$<br>$\uparrow +1.70$  |
| tt CR Electron Identification Eff         | $\downarrow -1.38$<br>$\uparrow +0.31$  | $\downarrow -1.47$<br>$\uparrow +0.94$  | $\downarrow -1.14$<br>$\uparrow +0.89$  | $\downarrow -1.04$<br>$\uparrow \pm 0.63$ |                                        | $\downarrow -0.73$<br>$\uparrow +0.24$   | $\downarrow -1.70$<br>$\uparrow +3.72$   |
| tt CR Electron Isolation Eff              | $\downarrow -0.31$                      | $\downarrow -0.94$                      | $\downarrow -0.89$                      | $\downarrow -0.63$                        | _                                      | $\downarrow -0.24$                       | $\downarrow -3.72$                       |
| $t\bar{t}$ CR Electron Reconstruction Eff | $\downarrow -0.24$                      | $\downarrow -0.23$                      | $\downarrow -0.20$                      | $\downarrow -0.17$                        |                                        | $\downarrow -0.11$                       | $\downarrow -0.31$                       |
| Electrons Scale                           | ↓0<br>↓0                                | ↓-0.20                                  | $\downarrow -1.45$                      | 10<br>10                                  |                                        | +0<br>↓0                                 | $10 \\ \downarrow -7.43$                 |
| Electrons Resolution                      | $\uparrow +1.52 \\ \downarrow +1.57$    | $\uparrow 0 \\ \downarrow +13.05$       | $\uparrow +0.33 \\ \downarrow +0.04$    | ↑0<br>↓0                                  |                                        | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow -7.43$       |
| $t\bar{t}$ CR Electron Trigger Eff        | $\uparrow +0.23 \\ \downarrow -0.23$    | $\uparrow +0.20 \\ \downarrow -0.20$    | $\uparrow +0.17 \\ \downarrow -0.17$    | $\uparrow +0.15 \\ \downarrow -0.15$      |                                        | $\uparrow +0.08 \\ \downarrow -0.08$     | $\uparrow +0.27 \\ \downarrow -0.27$     |
| Etmiss RES Parallel                       | $\uparrow -1.67 \\ \downarrow -1.67$    | $\uparrow -11.40 \\ \downarrow -11.40$  | $\uparrow -1.77 \\ \downarrow -1.77$    | ↑0<br>↓0                                  | _                                      | $\uparrow -25.59 \\ \downarrow -25.59$   | ↑0<br>↓0                                 |
| Etmiss RES Perpendicular                  | $\uparrow +1.36 \\ \downarrow +1.36$    | $\uparrow +1.18 \\ \downarrow +1.18$    | $\uparrow -1.87 \\ \downarrow -1.87$    | ↑0<br>↓0                                  | _                                      | $\uparrow -25.59$<br>$\downarrow -25.59$ | ↑0<br>↓0                                 |
| Etmiss Scale                              | $\uparrow -0.16$<br>+1.52               | ↑0<br>↓+14.23                           | $\uparrow -2.03$<br>$\downarrow +3.38$  | ↑0<br>↓0                                  |                                        | $\uparrow -25.59$                        | ↑0<br>↓0                                 |
| Fat jet D2 Baseline                       | ↑-0.35                                  | ↑-3.81<br>↓±2.08                        | ↑-2.58                                  | $\uparrow -5.51$                          |                                        | ↑0<br>↓0                                 | ↑0<br>↓0                                 |
| Fat jet D2 Modelling                      | $\uparrow -0.53$                        | ↑-3.81<br>↓ 2.12                        | ↑-2.80<br>+ 2.12                        | ↑-5.51                                    | -                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                 |
| Fat jet D2 TotalStat                      | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓↓0.61                            | ↑0<br>↓↓↓ 4 78                            | -                                      | ↑0<br>↓0                                 | <u>+0</u>                                |
| Fat jet D2 Tracking                       | ↑-0.19                                  | ↑0<br>↓↓0.00                            | ↑-0.24                                  | ↑0<br>↓↓ 4 70                             |                                        | <u>↓0</u><br>↑0                          | <br>↑0                                   |
| Fat. iet. Mass. Baseline                  | $\uparrow -2.10$                        | +2.08<br>$\uparrow +4.76$               | $\uparrow +0.61$<br>$\uparrow +0.93$    | $\uparrow -5.12$                          |                                        | ↓0<br>↑-34.11                            | $\uparrow -14.54$                        |
| Fat jet Mass Modelling                    | $\uparrow -1.92$                        | $\uparrow +8.70$                        | +3.57<br>$\uparrow -0.54$               | $\uparrow +13.02$<br>$\uparrow +0.60$     |                                        | <u>↓0</u><br>↑0                          | $\downarrow 0$<br>$\uparrow -14.54$      |
| Fat jet Mass TotalStat                    | $\downarrow -2.10$<br>$\uparrow 0$      | $\downarrow -1.45$<br>$\uparrow 0$      | $\downarrow +1.55$<br>$\uparrow -1.06$  | ↓+4.39<br>↑0                              | -                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Fat jet Mass TotalStat                    | $\downarrow 0$<br>$\uparrow -1.92$      | $\downarrow 0$<br>$\uparrow +8.52$      | $\downarrow +1.21$<br>$\uparrow -0.01$  | $\downarrow 0$<br>$\uparrow -4.21$        |                                        | ↓0<br>↑0                                 | $\downarrow 0$<br>$\uparrow -14.54$      |
| Fat jet mass fracking                     | $\downarrow -0.18$<br>$\uparrow +13.20$ | $\downarrow +5.58$<br>$\uparrow +11.26$ | $\downarrow +1.77$<br>$\uparrow +16.15$ | $\downarrow 0$<br>$\uparrow +15.60$       |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
|                                           | $\downarrow -2.25$<br>$\uparrow 0$      | $\downarrow -8.17$<br>$\uparrow 0$      | $\downarrow -9.56$<br>$\uparrow +6.17$  | $\downarrow -11.23$<br>$\uparrow +4.78$   |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Fat jet p1 Modelling                      | $\downarrow -2.25$<br>$\uparrow 0$      | ↓0<br>↑0                                | $\downarrow -1.42$<br>$\uparrow +1.07$  | ↓0<br>↑0                                  | -                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Fat jet p1 IotalStat                      | ↓0<br>↑+0.33                            | ↓0<br>↑+2.08                            | $\downarrow 0$<br>$\uparrow +6.42$      | ↓0<br>↑+4.78                              | -                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Fat jet p1 Tracking                       | $\downarrow -2.25$ $\uparrow 0$         | ↓0<br>↑0                                | $\downarrow -1.95$<br>$\uparrow 0$      | $\downarrow -5.51$ $\uparrow 0$           |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Muons ID                                  | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                  |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Muons MS                                  | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                  |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 |
| Muons Sagitta RES                         | ↓0<br>↓0                                | ↓0<br>↓0                                | ↓0<br>↓0                                | ↓0<br>↓0                                  |                                        | ↓0<br>↓0                                 | ↓0<br>↓0                                 |
| Muons Sagitta RHO                         | ↓0<br>↓0                                | ↓0<br>↓0                                | 10<br>10                                | 10<br>10                                  |                                        | ↓0<br>↓0                                 | 10<br>10                                 |
| Muons Scale                               | ↓0<br>↓10_28                            | ↓0<br>↓0                                | 10<br>10                                | 10<br>10                                  |                                        | ↓0<br>↓0                                 | 10<br>10                                 |
| Modelling                                 | $\downarrow -9.58$                      | $\downarrow -30.79$                     | _                                       |                                           | _                                      | $\downarrow -31.08$                      | _                                        |
| $t\bar{t}$ CR PRW                         | $\downarrow -29.11$                     | 7-3.64<br>$\downarrow +3.95$            | $\downarrow^{+3.27}_{-2.41}$            | $\downarrow -4.25$                        | -                                      | 1+3.48<br>$\downarrow -9.99$             | $1-23.23 \\ \downarrow +24.32$           |
| Matrix meth. (fake rate)                  | _                                       | _                                       | _                                       | _                                         | $\uparrow -41.65 \\ \downarrow +41.45$ |                                          |                                          |
| Matrix meth. (real rate)                  |                                         |                                         | _                                       | _                                         | $\uparrow +2.05 \\ \downarrow -2.11$   |                                          | _                                        |
| JES (Eta)                                 | $\uparrow +0.00 \\ \downarrow +1.53$    | $\uparrow +0.03 \\ \downarrow +13.05$   | $\uparrow +0.81 \\ \downarrow +0.34$    | $\uparrow +0.00 \\ \downarrow -0.01$      | _                                      | $\uparrow -0.00 \\ \downarrow +0.00$     | $\uparrow -0.01 \\ \downarrow -0.01$     |
| Jets Energy Resolution                    | ^+2.05<br>                              | ↑+36.75<br>-                            | ^+1.46<br>_                             | ↑-2.08<br>-                               |                                        | ^++0.13<br>                              | ↑-20.39<br>-                             |
| JES (In-situ analyses - N.P.1)            | $\uparrow +0.04 \\ \downarrow +1.43$    | $\uparrow +3.12 \\ \downarrow -24.25$   | $\uparrow +0.95 \\ \downarrow -5.31$    | $\uparrow -9.92 \\ \downarrow -19.67$     |                                        | $\uparrow +0.01 \\ \downarrow -25.58$    | $\uparrow +0.76 \\ \downarrow +0.26$     |
| JES (In-situ analyses - N.P.2)            | $\uparrow +0.00 \\ \downarrow +0.01$    | $\uparrow +1.16 \\ \downarrow +0.05$    | $\uparrow +0.67 \\ \downarrow -0.27$    | $\uparrow -0.01 \\ \downarrow +0.03$      | _                                      | $\uparrow -0.02 \\ \downarrow +0.00$     | $\uparrow -7.44 \\ \downarrow -0.03$     |
| JES (In-situ analyses - N.P.3)            | $\uparrow -0.16 \\ \downarrow +1.54$    | $\uparrow +13.04 \\ \downarrow -4.55$   | $\uparrow -0.89 \\ \downarrow -2.38$    | $\uparrow -0.01 \\ \downarrow +0.00$      | _                                      | $\uparrow -0.01 \\ \downarrow -0.03$     | $\uparrow -0.01 \\ \downarrow -0.04$     |
Таблица К.20. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR4 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                            | 0                                        |                                        | 0.                                       |                                        |                                      | 77                                   |                                         |
|-------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|
|                                           | é                                          | l ↑                                      |                                        | tof                                      |                                        | я<br>ц                               | 1                                    | 8                                       |
|                                           | 1                                          | *                                        |                                        | gle                                      | e                                      | oso                                  | *                                    | 040                                     |
|                                           | N                                          | i i i i i i i i i i i i i i i i i i i    | tt                                     | Sin                                      | Fak                                    | Dib                                  | ,<br>Z                               | E                                       |
| B-jet() Eff (B filter)                    | ^+2.33                                     | ^+2.50                                   | ^+2.70                                 | ^+2.94                                   | -                                      | ^+2.87                               | ^+3.21                               | ↑+0.49                                  |
| B jet0 Eff (C filter)                     | $\uparrow -2.33$<br>$\uparrow +0.08$       | $\uparrow +2.50$<br>$\uparrow +2.37$     | $\uparrow +1.42$                       | $\uparrow -2.94$<br>$\uparrow +3.18$     | -                                      | $\uparrow 0$                         | $\uparrow 0$                         | $\uparrow +23.98$                       |
| B jeto Eff Estention                      | $\downarrow -0.08$<br>$\uparrow +0.05$     | $\downarrow -2.37$<br>$\uparrow +0.31$   | $\downarrow -1.42$<br>$\uparrow +0.41$ | $\downarrow -3.18$<br>$\uparrow +0.66$   | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | $\downarrow -23.98$<br>$\uparrow +3.98$ |
| B-jeto Ell'Extention                      | $\downarrow -0.05$<br>$\uparrow 0$         | $\downarrow -0.31$<br>$\uparrow 0$       | $\downarrow -0.41$<br>$\uparrow +0.13$ | $\downarrow -0.66$<br>$\uparrow 0$       | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | $\downarrow -3.98$<br>$\uparrow 0$      |
| B-jet0 Eff Extention (C filter)           | <u>↓0</u><br>↑0                            | <u>↓0</u>                                | $\downarrow -0.13$                     | <u>↓0</u>                                | -                                      | <u>↓0</u><br>↑0                      | ↓0<br>↑0                             | ↓0<br>↑↓5 33                            |
| B-jet0 Eff (Light filter)                 |                                            | $\downarrow 0$                           | $\downarrow -0.64$                     | $\downarrow 0$                           | _                                      | $\downarrow 0$                       | ↓0<br>↓15,27                         | $\downarrow -5.33$                      |
| B-jet1 Eff (B filter)                     | $\downarrow -0.94$                         | $\downarrow -4.18$                       | $\downarrow -3.22$                     | $\downarrow -3.21$<br>$\downarrow -3.21$ |                                        | $\downarrow -2.20$                   | $\downarrow -5.37$                   | $\downarrow -5.49$                      |
| B-jet1 Eff (C filter)                     | $\downarrow -16.18$<br>$\downarrow -16.18$ | 10<br>10                                 | $\downarrow -1.77$                     | $\downarrow -2.03$<br>$\downarrow -2.03$ | _                                      | 10<br>10                             | 10<br>10                             | 10<br>↓0                                |
| B-jet1 Eff Extention                      | $\uparrow +0.01 \\ \downarrow -0.01$       | ↑0<br>↓0                                 | $\uparrow +0.04 \\ \downarrow -0.04$   | $\uparrow +0.09 \\ \downarrow -0.09$     | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.46 \\ \downarrow -0.46$   | ↑0<br>↓0                                 | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| B-jet1 Eff (Light filter)                 | ↑0<br>↓0                                   | $\uparrow +1.12 \\ \downarrow -1.12$     | $\uparrow +0.20 \\ \downarrow -0.20$   | ↑0<br>↓0                                 | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | $\uparrow +6.27 \\ \downarrow -6.27$    |
| $t\bar{t}$ CR Electron Identification Eff | $\uparrow +1.33 \\ \downarrow -1.33$       | $\uparrow +1.00 \\ \downarrow -1.00$     | $\uparrow +1.03 \\ \downarrow -1.03$   | $\uparrow +1.00 \\ \downarrow -1.00$     |                                        | $\uparrow +1.17 \\ \downarrow -1.17$ | $\uparrow +0.58 \\ \downarrow -0.58$ | $\uparrow +1.27 \\ \downarrow -1.27$    |
| $t\bar{t}$ CR Electron Isolation Eff      | $\uparrow +0.24$<br>$\downarrow -0.24$     | $\uparrow +1.02$<br>$\downarrow -1.02$   | $\uparrow +0.57$<br>$\downarrow -0.57$ | $\uparrow +0.44$                         | _                                      | ↑+0.09<br>↓-0.09                     | ↑+0.08<br>↓-0.08                     | $\uparrow +5.00$                        |
| $t\bar{t}$ CR Electron Reconstruction Eff | ↑+0.25<br>↓ 0.25                           | ↑+0.20<br>↓ 0.20                         | ↑+0.19                                 | $\uparrow +0.17$                         | -                                      | ↑+0.11                               | ↑+0.10<br>↓ 0.10                     | $\uparrow +0.17$                        |
| Electrons Scale                           | ↑+1.41                                     | ↑0<br>10                                 | ↑+1.00                                 | ↑0<br>10                                 | _                                      | ↑0                                   | <u>↓</u> _0.10                       | <u>↓−0.17</u><br>↑0                     |
| Electrons Besolution                      | ↓0<br>↑+1.40                               | ±0<br>↑0                                 | $\uparrow -0.42$                       | ±0<br>↑0                                 | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| $t\bar{t}$ CB Electron Trigger Eff        | $\uparrow +0.00$<br>$\uparrow +0.23$       | $\uparrow +32.28$<br>$\uparrow +0.18$    | $\uparrow +0.71$<br>$\uparrow +0.19$   | $\uparrow^{+0.15}$                       | -                                      | ↓0<br>↑+0.08                         | ↓0<br>↑+0.07                         | ↓0<br>↑+0.11                            |
| Etmiss BES Parallel                       | $\uparrow 0.23$<br>$\uparrow 0$            | $\uparrow +7.24$                         | $\uparrow -2.64$                       | $\uparrow -0.15$<br>$\uparrow -8.47$     | -                                      | $\uparrow 0$                         | $\uparrow 0.07$                      | $\uparrow 0.11$                         |
| Etailes DES Den en diaulan                | $\downarrow 0$<br>$\uparrow +1.40$         | $\downarrow +7.24$<br>$\uparrow -15.13$  | $\downarrow -2.64$<br>$\uparrow -4.76$ | $\downarrow -8.47$<br>$\uparrow -3.68$   | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Ethniss RES Ferpendicular                 | $\downarrow +1.40$<br>$\uparrow 0$         | $\downarrow -15.13$<br>$\uparrow 0$      | $\downarrow -4.76$<br>$\uparrow -2.99$ | ↓-3.68<br>↑0                             | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Etmiss Scale                              | $\downarrow +1.40$<br>$\uparrow -0.17$     | $\downarrow +48.39$<br>$\uparrow -9.42$  | +4.20<br>$\uparrow -2.05$              | $\downarrow 0$<br>$\uparrow -4.71$       | _                                      | <u>↓0</u><br>10                      | ↓0<br>↑0                             | <u>↓0</u><br>↑0                         |
| Fat jet D2 Baseline                       | $\downarrow +0.30$<br>$\uparrow -0.17$     | $\downarrow 0$<br>$\uparrow -9.42$       | $\downarrow +1.92$<br>$\uparrow -2.23$ | $\downarrow 0$                           | -                                      | $\downarrow 0$                       | ↓0<br>±0                             | ↓ <u>0</u><br>                          |
| Fat jet D2 Modelling                      | $\downarrow +0.30$                         | $\downarrow +0.12$                       | ↓+2.93                                 | $\downarrow +8.37$                       | _                                      |                                      |                                      | ↓+13.03                                 |
| Fat jet D2 TotalStat                      | +0<br>↓0                                   | 10<br>10                                 | $\downarrow^{+0}_{+1.37}$              | +0<br>↓0                                 | _                                      | ↓0                                   | +0<br>↓0                             | 10<br>↓0                                |
| Fat jet D2 Tracking                       | $\uparrow -0.17 \\ \downarrow +0.30$       | ↑0<br>↓0                                 | $\uparrow -0.51 \\ \downarrow +1.37$   | ↑0<br>↓0                                 | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| Fat jet Mass Baseline                     | $\uparrow 0$<br>$\downarrow -1.93$         | $\uparrow -24.66 \\ \downarrow +13.80$   | $\uparrow -1.70 \\ \downarrow -0.33$   | $\uparrow -4.72 \\ \downarrow +8.95$     | _                                      | $\uparrow 0$<br>$\downarrow 0$       | $\uparrow -51.55 \\ \downarrow 0$    | ↑0<br>↓0                                |
| Fat jet Mass Modelling                    | $\uparrow 0$<br>$\downarrow -1.93$         | $\uparrow +3.01 \\ \downarrow +13.80$    | $\uparrow +0.24 \\ \downarrow -0.25$   | $\uparrow -4.04 \\ \downarrow +9.11$     | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| Fat jet Mass TotalStat                    | <br>0                                      | ↑0<br>↓0                                 | $\uparrow +1.17 \\ \downarrow -0.53$   | ↑-3.94<br>↓0                             | _                                      | 0<br>↓0                              | 0<br>↓0                              | 0<br>↓0                                 |
| Fat jet Mass Tracking                     | $\uparrow 0$<br>$\downarrow -0.17$         | ↑+3.01<br>↓+13.80                        | $\uparrow +1.33$<br>$\downarrow -0.84$ | ↑-3.94<br>↓+5.29                         | _                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| Fat jet pT Baseline                       | ↑+8.11                                     | $\uparrow 0$                             | ↑+17.44                                | ↑+4.99                                   | -                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| Fat jet pT Modelling                      | ↑0<br>↓ 2.07                               | ↑0<br>↓0                                 | ↑+7.42                                 | ↑0<br>↓0                                 | -                                      | ↑0<br>↓0                             | ↑0<br>↓0                             | ↑0<br>↓0                                |
| Fat jet pT TotalStat                      | ↑0<br>↓0                                   | 10<br>10                                 | ↑+1.81<br>↓ 0.59                       | ±0<br>↑0                                 | _                                      | ↑0<br>10                             | ±0<br>↑0                             | <u>↓0</u><br>↑0                         |
| Fat jet pT Tracking                       | ↓0<br>↑+0.30                               | ↓0<br>↑0                                 | $\uparrow +7.42$                       | ±0<br>↑0                                 | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muons ID                                  | ↓-2.07<br>↑0                               | ↓0<br>↑0                                 | $\uparrow^{-2.84}$                     | ↓-4.71<br>↑0                             | _                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muons MS                                  | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muona Sagitta PES                         | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | -                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muons Sagitta RES                         | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 |                                        | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muons Sagitta RHO                         | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | _                                      | ↓0<br>↑0                             | ↓0<br>↑0                             | ↓0<br>↑0                                |
| Muons Scale                               | ↓0<br>↑⊥13.04                              | $\downarrow 0$<br>$\uparrow \pm 45.21$   | Ļõ                                     | Ļõ                                       | _                                      | ↓0<br>↓1<br>↓1<br>↓0                 | ↓0<br>↓17 95                         | Ļõ                                      |
| Modelling                                 | ↓-9.89                                     | $\downarrow -31.59$                      | -<br>-                                 | _<br>_<br>                               | _                                      | $\downarrow -22.40$                  | $\downarrow -29.76$                  | _<br>_<br>_                             |
| $t\bar{t}$ CR PRW                         | $\downarrow -35.25$                        | $\downarrow +10.91$                      | $\downarrow -6.75$                     | $\downarrow -2.20$                       | _                                      | $\downarrow +7.36$                   | $\downarrow +6.03$                   | $\downarrow +0.33$                      |
| Matrix meth. (fake rate)                  | -                                          | _                                        |                                        | -                                        | $\uparrow -36.99 \\ \downarrow +36.26$ |                                      | -                                    | _                                       |
| Matrix meth. (real rate)                  | -                                          |                                          |                                        |                                          | $\uparrow +3.31 \\ \downarrow -3.35$   |                                      | =                                    | _                                       |
| JES (Eta)                                 | $\uparrow +0.00 \\ \downarrow +1.25$       | $\uparrow +13.22 \\ \downarrow +32.26$   | $\uparrow +1.47 \\ \downarrow -0.99$   | $\uparrow + 0.01 \\ \downarrow - 0.01$   |                                        | $\uparrow 0$<br>$\downarrow 0$       | $\uparrow^0$<br>$\downarrow^0$       | $\uparrow +0.01 \\ \downarrow -0.42$    |
| Jets Energy Resolution                    | ^++1.46<br>-                               | ↑+76.35<br>-                             | ↑-8.64<br>-                            | ↑-10.18<br>-                             |                                        | ↑0<br>_                              | ↑-0.01<br>-                          | $\uparrow -0.45$<br>-                   |
| JES (In-situ analyses - N.P.1)            | $\uparrow +0.34 \\ \downarrow +0.95$       | $\uparrow +19.62 \\ \downarrow -0.12$    | $\uparrow +1.44 \\ \downarrow -9.87$   | $\uparrow +8.66 \\ \downarrow -20.73$    |                                        | $\uparrow -0.16 \\ \downarrow +0.36$ | ↑+0.05<br>↓-0.03                     | $\uparrow +0.05 \\ \downarrow -0.51$    |
| JES (In-situ analyses - N.P.2)            | $\uparrow +0.00$<br>$\downarrow -0.15$     | $\uparrow +2.89$<br>$\downarrow +0.03$   | $\uparrow -0.52$<br>$\downarrow -1.17$ | $\uparrow -0.02$<br>$\downarrow +0.02$   |                                        | ↑0<br>.1.0                           | 10<br>10                             | $\uparrow +0.02$<br>$\downarrow -0.42$  |
| JES (In-situ analyses - N.P.3)            | $\uparrow -0.01$<br>+1.25                  | $\uparrow +32.25$<br>$\downarrow +37.81$ | ↑-3.41<br>↓-1.74                       | $\uparrow -0.02$                         |                                        | ↑0<br>↓0                             | ↑+0.03                               | $\uparrow +0.01$                        |
|                                           | 1 ¥ 1 ± · 40                               | 1 #101.01                                | · · · · · · · · · · · · · · · · · · ·  |                                          |                                        | **                                   | **                                   | * * *                                   |

Таблица К.21. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR5 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                            |                                         | 0                                        |                                           | 0.                                                            |                              |                                          | 77                                      |                                        |
|--------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|
|                                            | ev                                      | L ↑                                      |                                           | tol                                                           |                              | n n                                      | ↑ (                                     | 8                                      |
|                                            | 1                                       | *                                        |                                           | gle                                                           | e                            | oso                                      | *                                       | 02                                     |
|                                            | И                                       | N                                        | tt.                                       | Sin                                                           | Fal                          | Dit                                      | N                                       | EL                                     |
| B-jet0 Eff (B filter)                      | ↑+2.50                                  | ↑+2.80                                   | ↑+2.65                                    | ^+3.22                                                        | -                            | ↑+2.87                                   | ↑+3.21                                  | ↑+0.51                                 |
| B-jet0 Eff (C filter)                      | $\uparrow +0.07$                        | $\uparrow -2.80$<br>$\uparrow +1.86$     | $\uparrow +2.05$<br>$\uparrow +2.15$      | $\uparrow -3.22$<br>$\uparrow +1.54$                          | -                            | <u>↓-2.87</u><br>↑0                      | ↓ <u>-3.21</u><br>↑0                    | $\uparrow + 22.74$                     |
| B-jet0 Eff Extention                       | $\uparrow +0.07$<br>$\uparrow +0.05$    | $\uparrow +0.55$                         | $\uparrow +0.23$                          | $\uparrow +0.81$                                              | -                            | ±0<br>↑0                                 | ±0<br>↑0                                | $\uparrow +3.68$                       |
| P jet0 Eff Extention (C filter)            | $\downarrow -0.05$<br>$\uparrow 0$      | $\downarrow -0.55$<br>$\uparrow 0$       | $\downarrow -0.23$<br>$\uparrow +0.15$    | $\downarrow -0.81$<br>$\uparrow 0$                            |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | $\downarrow -3.68$<br>$\uparrow 0$     |
|                                            | ↓0<br>↑0                                | ↓0<br>↑0                                 | $\downarrow -0.15$<br>$\uparrow +0.47$    | ↓0<br>↑0                                                      |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | $\downarrow 0$<br>$\uparrow +4.61$     |
| D i th DT (D Ch )                          | $\downarrow 0$<br>$\uparrow +1.27$      | $\downarrow 0$<br>$\uparrow +2.89$       | $\downarrow -0.47$<br>$\uparrow +3.83$    | $\downarrow 0$<br>$\uparrow +3.50$                            | -                            | $\downarrow 0$<br>$\uparrow +2.20$       | $\downarrow 0$<br>$\uparrow +5.37$      | $\downarrow -4.61$<br>$\uparrow +1.91$ |
| B-jet1 Eff (B filter)                      | $\downarrow -1.27$<br>$\uparrow +15.62$ | $\downarrow -2.89$<br>$\uparrow +0.64$   | $\downarrow -3.83$<br>$\uparrow +2.44$    | $\downarrow -3.50$<br>$\uparrow +1.09$                        | -                            | $\downarrow -2.20$                       | $\downarrow -5.37$                      | $\downarrow -1.91$<br>$\uparrow +6.71$ |
| B-jet1 Eff (C filter)                      | $\downarrow -15.62$                     | $\downarrow -0.64$                       | $\downarrow -2.44$                        | $\downarrow -1.09$                                            | -                            |                                          | ↓0<br>↓0                                | $\downarrow -6.71$                     |
| B-jet1 Eff Extention                       | $\downarrow -0.01$                      |                                          | $\downarrow -0.06$                        | 10                                                            |                              |                                          |                                         |                                        |
| B-jet1 Eff Extention (C filter)            | 10<br>10                                | 10<br>10                                 | $\downarrow -0.41$<br>$\downarrow -0.41$  | 10<br>10                                                      | _                            | 10<br>10                                 | 10<br>10                                | ↓0<br>↓0                               |
| B-jet1 Eff (Light filter)                  | ↑0<br>↓0                                | $\uparrow +0.88 \\ \downarrow -0.88$     | $\uparrow +0.73$<br>$\downarrow -0.73$    | ↑0<br>↓0                                                      | _                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | $\uparrow +4.87$<br>$\downarrow -4.87$ |
| $t\bar{t}$ CR Electron Identification Eff  | $\uparrow +1.34 \\ \downarrow -1.34$    | $\uparrow +1.07 \\ \downarrow -1.07$     | $\uparrow +0.99 \\ \downarrow -0.99$      | $\uparrow +0.91 \\ \downarrow -0.91$                          | _                            | $\uparrow +1.17 \\ \downarrow -1.17$     | $\uparrow +0.58 \\ \downarrow -0.58$    | $\uparrow +1.64 \\ \downarrow -1.64$   |
| $t\bar{t}~{\rm CR}$ Electron Isolation Eff | $\uparrow +0.27 \\ \downarrow -0.27$    | $\uparrow +0.61 \\ \downarrow -0.61$     | $\uparrow +0.32 \\ \downarrow -0.32$      | $\uparrow +0.33 \\ \downarrow -0.33$                          | _                            | $\uparrow +0.09 \\ \downarrow -0.09$     | $\uparrow +0.08 \\ \downarrow -0.08$    | $\uparrow +3.16 \\ \downarrow -3.16$   |
| $t\bar{t}$ CR Electron Reconstruction Eff  | $\uparrow +0.25$<br>$\downarrow -0.25$  | $\uparrow +0.22$<br>$\downarrow -0.22$   | $\uparrow +0.20$<br>$\downarrow -0.20$    | $\uparrow +0.17$<br>$\downarrow -0.17$                        | _                            | $\uparrow +0.11$<br>$\downarrow -0.11$   | $\uparrow +0.10$<br>$\downarrow -0.10$  | $\uparrow +0.18$<br>$\downarrow -0.18$ |
| Electrons Scale                            | ↑+0.00                                  | ↑0<br>↓0                                 | ↑-0.66                                    | ↑+4.11                                                        | -                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Electrons Resolution                       | ↑0<br>↓↓0.00                            | ↑0<br>↓↓ 05 05                           | ↑-0.66                                    | ↑0<br>↓ 0.00                                                  | -                            | ↑0                                       | ↑0<br>10                                | <u>↑0</u>                              |
| $t\bar{t}$ CB. Electron Trigger Eff        | $\uparrow +0.00$<br>$\uparrow +0.23$    | $\uparrow + 0.22$                        | $\uparrow +0.14$<br>$\uparrow +0.20$      | $\uparrow +0.16$                                              | -                            | 10100                                    | ↓0<br>↑+0.07                            | ↓0<br>↑+0.16                           |
| Etmiss BES Parallel                        | $\uparrow -0.23$<br>$\uparrow +1.50$    | $\uparrow +5.69$                         | $\uparrow -5.99$                          | $\uparrow -0.16$<br>$\uparrow -8.44$                          |                              | <u>↓-0.08</u><br>↑0                      | <u>↓-0.07</u><br>↑0                     | $\uparrow 0$                           |
| Etmiss PES Perpendicular                   | $\downarrow +1.50$<br>$\uparrow -1.47$  | $\downarrow +5.69$<br>$\uparrow -11.88$  | $\downarrow -5.99$<br>$\uparrow -4.03$    | $\downarrow -8.44$<br>$\uparrow -4.13$                        |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
|                                            | $\downarrow -1.47$<br>$\uparrow -1.47$  | ↓-11.88<br>↑0                            | $\downarrow -4.03$<br>$\uparrow -3.48$    | $\downarrow -4.13$<br>$\uparrow -3.96$                        | -                            | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Etmiss Scale                               | $\downarrow +1.50$<br>$\uparrow -0.17$  | $\downarrow +37.99$<br>$\uparrow -17.29$ | $\downarrow +2.02$<br>$\uparrow -1.81$    | $\downarrow +7.90$<br>$\uparrow -11.80$                       | -                            | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Fat jet D2 Baseline                        | $\downarrow +0.29$<br>$\uparrow -0.31$  | $\downarrow +35.04$<br>$\uparrow -22.10$ | $\downarrow +2.21$<br>$\uparrow -3.41$    | ↓0<br>↑-11.80                                                 | -                            | <u>↓0</u><br>10                          | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Fat jet D2 Modelling                       | $\downarrow +0.29$                      | ↓+35.14                                  | $\downarrow +2.77$                        | $\downarrow +8.14$                                            | _                            |                                          | ↓0<br>↓0                                |                                        |
| Fat jet D2 TotalStat                       | ↓0<br>↓0                                | $\downarrow +33.15$                      | ↓+1.58                                    | ↓0<br>↓0                                                      |                              |                                          |                                         |                                        |
| Fat jet D2 Tracking                        | $\uparrow -0.17 \\ \downarrow +0.29$    | $\uparrow -9.89 \\ \downarrow +35.04$    | $\gamma = 0.59$<br>$\downarrow +1.58$     | ↑-3.76<br>↓0                                                  | _                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Fat jet Mass Baseline                      | $\uparrow 0$<br>$\downarrow -1.68$      | $\uparrow +23.05 \\ \downarrow +28.62$   | $\uparrow -4.91 \\ \downarrow +5.20$      | $\uparrow -0.76 \\ \downarrow +8.71$                          | _                            | ↑0<br>↓0                                 | ↑-51.55<br>↓0                           | ↑-6.03<br>↓0                           |
| Fat jet Mass Modelling                     | $\uparrow 0$<br>$\downarrow -1.73$      | $\uparrow +23.05 \\ \downarrow +10.83$   | $\uparrow -1.73 \\ \downarrow +2.56$      | $\uparrow -0.10 \\ \downarrow +8.87$                          | _                            | $\uparrow 0$<br>$\downarrow 0$           | ↑0<br>↓0                                | $\uparrow -6.03$<br>$\downarrow 0$     |
| Fat jet Mass TotalStat                     | $\uparrow 0$<br>$\downarrow +0.19$      | ↑0<br>↓0                                 | $\uparrow +1.95$<br>$\downarrow 0$        | ↑0<br>↓0                                                      | _                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑+12.88<br>↓0                          |
| Fat jet Mass Tracking                      | ↑0<br>↓-0.16                            | $\uparrow +2.36 \\ \downarrow +10.83$    | $\uparrow -0.47$<br>$\downarrow +0.52$    | $\uparrow 0$<br>$\downarrow +5.15$                            | =                            | 0<br>_⊥0                                 | 0<br>↓0                                 | ↑-6.03<br>↓0                           |
| Fat jet pT Baseline                        | $\uparrow +3.82$<br>$\downarrow -2.00$  | $\uparrow +35.04$<br>$\downarrow -14.85$ | $\uparrow +14.03$<br>$\downarrow -12.28$  | $\uparrow +4.86$<br>$\downarrow -13.10$                       | _                            | ↑0<br>10                                 | ↑0<br>↓0                                | ↑0<br>↓+12.88                          |
| Fat jet pT Modelling                       | $\uparrow 0$<br>$\downarrow -2.00$      | ↑+33.15<br>↓_9.89                        | $\uparrow +4.69$<br>$\downarrow \pm 0.12$ | $\uparrow 0$<br>$\downarrow -3.76$                            | _                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Fat jet pT TotalStat                       | ↑0<br>↓0                                | ↑0<br>↓0                                 | ↑+0.92                                    | ↑0<br>↓0                                                      | -                            | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Fat jet pT Tracking                        | ↑+0.29                                  | +35.04                                   | ↑+6.20                                    | ↑0<br>↑0                                                      | -                            | ↑0<br>10                                 | ↑0<br>10                                | ↑0<br>10                               |
| Muons ID                                   | ↓ <u>-2.00</u><br>↑0                    | <u>↓-9.89</u><br>↑0                      | <u>↓</u> =0.35                            | ↓ <u>-8.35</u><br>↑0                                          | -                            | 10<br>10                                 | ±0<br>↑0                                | <u>↓0</u><br>↑0                        |
| Muons MS                                   | ±0<br>↑0                                | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ±0<br>↑0                                                      | -                            | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Muons Sagitta BES                          | ↓0<br>↑0                                | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                                                      |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Muons Sagitta RHO                          | ↓0<br>↑0                                | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                                                      |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Muons Sagitta ItiiO                        | ↓0<br>↑0                                | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                                                      |                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               |
| Muons Scale                                | ↓0<br>↑+8.81                            | $\downarrow 0$<br>$\uparrow +45.86$      | ↓0<br>_                                   | 10<br>                                                        | -                            | $\downarrow 0$<br>$\uparrow +35.14$      | $\downarrow 0$<br>$\uparrow + 49.37$    | ↓0<br>_                                |
| Modelling                                  | $\downarrow -5.18$<br>$\uparrow +92.52$ | $\downarrow -30.60$<br>$\uparrow -2.70$  | -<br>++5.92                               | _<br>↑-9.70                                                   | -                            | $\downarrow -23.40$<br>$\uparrow -21.10$ | $\downarrow -30.01$<br>$\uparrow -3.46$ | _<br>↑ - 6.70                          |
| tt CR PRW                                  | ↓-33.64                                 | $\downarrow -2.60$                       | $\downarrow -1.44$                        | $\downarrow +5.28$                                            | -<br>1-37 77                 | ↓+7.36                                   | ↓+6.03                                  | ↓+1.48                                 |
| Matrix meth. (fake rate)                   | _                                       |                                          |                                           | _                                                             | $\downarrow +37.41$          |                                          |                                         |                                        |
| Matrix meth. (real rate)                   | -                                       | -                                        | _                                         | -                                                             | $\downarrow^{+1.44}_{-1.45}$ |                                          | -                                       | -                                      |
| JES (Eta)                                  | $\uparrow^{+1.50}_{\downarrow -1.47}$   | $\uparrow^{+10.38}_{+25.33}$             | $\uparrow^{+2.34}_{\downarrow+0.64}$      | $\uparrow +3.77 \\ \downarrow +3.94$                          | -                            |                                          | T0<br>↓0                                | $\uparrow -0.07 \\ \downarrow +0.02$   |
| Jets Energy Resolution                     | ↑-1.24<br>-                             | ↑+24.48<br>-                             | ^++4.63<br>_                              | ↑+8.27<br>-                                                   |                              | ↑+59.90<br>-                             | ↑-0.01<br>-                             | ↑-0.01<br>-                            |
| JES (In-situ analyses - N.P.1)             | $\uparrow -2.89 \\ \downarrow +1.19$    | $\uparrow +15.41$<br>$\downarrow -3.27$  | $\uparrow +5.37 \\ \downarrow +6.64$      | $\begin{array}{c}\uparrow -0.09\\\downarrow +9.06\end{array}$ |                              | $\uparrow -0.16 \\ \downarrow +0.36$     | $\uparrow +0.05 \\ \downarrow -0.03$    | $\uparrow +0.13 \\ \downarrow -0.10$   |
| JES (In-situ analyses - N.P.2)             | $\uparrow +0.00 \\ \downarrow +1.50$    | $\uparrow +2.27 \\ \downarrow +0.04$     | $\uparrow +2.21 \\ \downarrow -1.17$      | $\uparrow -0.03 \\ \downarrow +0.03$                          | _                            | $\uparrow 0$<br>$\downarrow 0$           | $\uparrow 0$<br>$\downarrow 0$          | $\uparrow -0.06 \\ \downarrow -0.00$   |
| JES (In-situ analyses - N.P.3)             | $\uparrow +1.49 \\ \downarrow +0.03$    | $\uparrow +25.32 \\ \downarrow +13.22$   | $\uparrow +1.66 \\ \downarrow +1.52$      | $\uparrow +3.95 \\ \downarrow +8.64$                          |                              | ↑0<br>↓0                                 | ↑+0.03<br>↓0                            | $\uparrow +0.01 \\ \downarrow +0.00$   |

Таблица К.22. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR6 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                          | ee                                      |                                        | <u>d</u>                                 |                                         |                                          |                                         | ττ                                      |                                          |
|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|
|                                           | ev                                       | 1                                       |                                        | e to                                     |                                         | son                                      | TV                                      | 1<br>1                                  | 600                                      |
|                                           | ↑                                        | *~/                                     |                                        | ngl                                      | ake                                     | ibos                                     | ↑                                       | *~/                                     | Ē                                        |
|                                           | 2                                        | N<br>A LO CI                            | <u>t</u>                               |                                          | Ř                                       | <u> </u>                                 | 2                                       | N<br>A L B B B                          | E                                        |
| B-jet0 Eff (B filter)                     | $\uparrow +2.33$<br>$\downarrow -2.33$   | $\uparrow +2.61$<br>$\downarrow -2.61$  | $\uparrow +2.86$<br>$\downarrow -2.86$ | $\uparrow +3.19 \\ \downarrow -3.19$     | _                                       | $\uparrow +2.87$<br>$\downarrow -2.87$   | $\uparrow +2.20 \\ \downarrow -2.20$    | $\uparrow +3.30 \\ \downarrow -3.30$    | $\uparrow +0.72$<br>$\downarrow -0.72$   |
| B-jet0 Eff (C filter)                     | $\uparrow +0.28 \\ \downarrow -0.28$     | $\uparrow +5.45 \\ \downarrow -5.45$    | $\uparrow +2.96$<br>$\downarrow -2.96$ | $\uparrow +1.45 \\ \downarrow -1.45$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow +23.57$<br>$\downarrow -23.57$ |
| B-jet0 Eff Extention                      | $\uparrow +0.16 \\ \downarrow -0.16$     | $\uparrow +1.00 \\ \downarrow -1.00$    | $\uparrow +0.43$<br>$\downarrow -0.43$ | $\uparrow +0.76 \\ \downarrow -0.76$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow +3.51 \\ \downarrow -3.51$     |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow 0$          | $\uparrow +0.25 \\ \downarrow -0.25$   | ↑0<br>↓0                                 | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| B-jet0 Eff (Light filter)                 | $\uparrow +0.11 \\ \downarrow -0.11$     | ↑0<br>↓0                                | $\uparrow +0.88 \\ \downarrow -0.88$   | $\uparrow +1.12 \\ \downarrow -1.12$     | -                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow +1.54 \\ \downarrow -1.54$     |
| B-jet1 Eff (B filter)                     | $\uparrow +0.80$<br>$\downarrow -0.80$   | $\uparrow +3.78 \\ \downarrow -3.78$    | $\uparrow +3.62 \\ \downarrow -3.62$   | ↑+3.03<br>↓-3.03                         |                                         | $\uparrow +2.20 \\ \downarrow -2.20$     | $\uparrow +7.88$<br>$\downarrow -7.88$  | $\uparrow +6.35 \\ \downarrow -6.35$    | $\uparrow +1.95 \\ \downarrow -1.95$     |
| B-jet1 Eff (C filter)                     | $\uparrow +16.94$<br>$\downarrow -16.94$ | ↑+1.22<br>↓-1.22                        | ↑+1.17<br>↓-1.17                       | ↑+0.94<br>↓-0.94                         | _                                       | ↑0<br>.1.0                               | ^0<br>.⊥0                               | $\uparrow +4.26$<br>$\downarrow -4.26$  | $\uparrow +9.57$                         |
| B-jet1 Eff Extention                      | ↑+0.03<br>↓-0.03                         | ↑0<br>.⊥0                               | ↑0<br>.1.0                             | ↑0<br>.1.0                               | _                                       | ↑0<br>.1.0                               | ↑0<br>.↓0                               | ↑0<br>.1.0                              | ↑+3.01<br>↓-3.01                         |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                 | ↑0<br>↓0                                | $\uparrow +0.22$<br>$\downarrow -0.22$ | ↑0<br>↓0                                 | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| B-jet1 Eff (Light filter)                 | ↑+0.06                                   | ↑+1.67                                  | ↑+2.68                                 | ↑0<br>↓0                                 | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑+7.84<br>↓ 7.84                         |
| $t\bar{t}$ CR Electron Identification Eff | ↑+1.33                                   | ↑+0.92                                  | ↑+0.83                                 | ↑+1.10<br>↓ 1.10                         | -                                       | ↑+1.17                                   | ↑+1.36<br>+ 1.26                        | ↑+0.34<br>↓ 0.34                        | ↑+1.37<br>↓ 1.37                         |
| $t\bar{t}$ CR Electron Isolation Eff      | ↑+0.26                                   | ↑+0.83                                  | ↑+0.31                                 | $\uparrow +0.46$                         | -                                       | ↑+0.09                                   | ↑+0.16                                  | ↑+0.06                                  | ↑+3.40                                   |
| $t\bar{t}$ CR Electron Reconstruction Eff | ↓-0.26<br>↑+0.25                         | ↓ <u>-0.83</u><br>↑+0.15                | $\uparrow +0.31$<br>$\uparrow +0.18$   | $\uparrow +0.46$<br>$\uparrow +0.19$     | -                                       | <u>↓-0.09</u><br>↑+0.11                  | ↓ <u>+0.16</u><br>↑+0.26                | ↓ <u>+0.08</u><br>↑+0.09                | ↓-3.40<br>↑+0.19                         |
| Electrons Scale                           | $\uparrow +0.25$<br>$\uparrow +0.00$     | $\uparrow 0.15$                         | $\uparrow +0.18$<br>$\uparrow +0.00$   | $\uparrow +2.92$                         | -                                       | $\uparrow 0$                             | ↓-0.26<br>↑0                            | ↓-0.09<br>↑0                            | $\uparrow +0.19$<br>$\uparrow +0.02$     |
| Electrons Besolution                      | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑+0.00                           | ↓0<br>↑0                                 | -                                       | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | $\downarrow 0$<br>$\uparrow +0.02$       |
| tr CP Floatnon Triggor Eff                | $\downarrow +0.00$<br>$\uparrow +0.23$   | $\downarrow 0$<br>$\uparrow +0.16$      | $\downarrow -2.18$<br>$\uparrow +0.16$ | $\downarrow +2.92$<br>$\uparrow +0.20$   |                                         | ↓0<br>↑+0.08                             | $\downarrow 0$<br>$\uparrow +0.25$      | ↓0<br>↑+0.06                            | ↓0<br>↑+0.18                             |
| Eterring DEC Dangligh                     | $\downarrow -0.23$<br>$\uparrow +1.43$   | $\downarrow -0.16$<br>$\uparrow -13.18$ | $\downarrow -0.16$<br>$\uparrow -1.85$ | $\downarrow -0.20$<br>$\uparrow -3.84$   |                                         | ↓-0.08<br>↑0                             | $\downarrow -0.25$<br>$\uparrow 0$      | $\downarrow -0.06$<br>$\uparrow 0$      | $\downarrow -0.18$<br>$\uparrow 0$       |
|                                           | $\downarrow +1.43$<br>$\uparrow 0$       | $\downarrow -13.18$<br>$\uparrow -3.80$ | $\downarrow -1.85$<br>$\uparrow -1.96$ | $\downarrow -3.84$<br>$\uparrow +4.65$   |                                         | <u>↓0</u><br>↑0                          | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                 |
| Etmiss RES Perpendicular                  | ↓0<br>↑0                                 | $\downarrow -3.80$<br>$\uparrow -3.80$  | $\downarrow -1.96$<br>$\uparrow -2.90$ | $\downarrow +4.65$<br>$\uparrow -3.60$   | -                                       | <u>↓0</u><br>↑0                          | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                 |
| Etmiss Scale                              | ↓0<br>↑=0.50                             | $\downarrow 0$                          | +3.28                                  | $\downarrow +10.25$<br>$\uparrow -11.08$ | -                                       | <u>↓0</u><br>↑0                          | <u>↓0</u><br>↑0                         | ↓0<br>↑0                                | $\downarrow 0$<br>$\uparrow -4.69$       |
| Fat jet D2 Baseline                       | $\downarrow +0.32$                       | $\downarrow +3.58$                      | $\downarrow +4.19$                     | $\downarrow +3.36$                       | -                                       |                                          |                                         |                                         | ↓0<br>↓0                                 |
| Fat jet D2 Modelling                      | $\downarrow +0.32$                       | $\downarrow +3.76$                      | $\downarrow +5.18$                     | ↓+11.00                                  | _                                       |                                          | ↓0<br>↓0                                | 10<br>10                                | ↓0<br>↓0                                 |
| Fat jet D2 TotalStat                      | +0<br>↓0                                 | 10<br>10                                | ↓+1.08                                 | ↓0<br>↓0                                 | _                                       | 10<br>10                                 | 10<br>10                                | 10<br>10                                | 10<br>10                                 |
| Fat jet D2 Tracking                       | $\uparrow -0.50 \\ \downarrow +0.32$     | $\uparrow 0$<br>$\downarrow +3.58$      | $\uparrow -1.02 \\ \downarrow +1.08$   | ↑-3.53<br>↓0                             | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| Fat jet Mass Baseline                     | $\uparrow -0.36 \\ \downarrow -1.63$     | $\uparrow +43.65 \\ \downarrow +28.46$  | $\uparrow -5.61 \\ \downarrow +3.54$   | $\uparrow +4.81 \\ \downarrow -0.33$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑-9.17<br>↓0                             |
| Fat jet Mass Modelling                    | $\uparrow -0.36 \\ \downarrow -3.60$     | $\uparrow +43.65 \\ \downarrow +28.46$  | $\uparrow -4.75 \\ \downarrow +0.52$   | $\uparrow +0.96 \\ \downarrow -0.18$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow -4.81$<br>$\downarrow 0$       |
| Fat jet Mass TotalStat                    | $\uparrow 0$<br>$\downarrow +0.21$       | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                                 | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow -4.81$<br>$\downarrow 0$       |
| Fat jet Mass Tracking                     | $\uparrow -0.36 \\ \downarrow -1.92$     | $\uparrow +4.48 \\ \downarrow +28.46$   | $\uparrow -3.89 \\ \downarrow -0.88$   | $\uparrow +4.81 \\ \downarrow -3.67$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow -4.81$<br>$\downarrow 0$       |
| Fat jet pT Baseline                       | $\uparrow +2.34 \\ \downarrow -3.06$     | $\uparrow +3.58 \\ \downarrow -13.18$   | $\uparrow +12.10 \\ \downarrow -6.25$  | $\uparrow +9.71 \\ \downarrow -7.84$     | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | $\uparrow 0$<br>$\downarrow -5.36$       |
| Fat jet pT Modelling                      | $\uparrow 0$<br>$\downarrow -0.18$       | <u>↑0</u>                               | $\uparrow +2.86$<br>$\downarrow -3.13$ | ↑0<br>↓-3.53                             | _                                       | ↑0<br>↓0                                 | ↑0<br>.1.0                              | ↑0<br>.1.0                              | ↑0<br>.1.0                               |
| Fat jet pT TotalStat                      | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>10                               | ↑0<br>↓0                                 | _                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| Fat jet pT Tracking                       | ↑+0.32<br>↓ 0.50                         | ↑+3.58                                  | $\uparrow +4.19$                       | ↑+6.35                                   | -                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| Muons ID                                  | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                                 | -                                       | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                                | ↑0<br>↓0                                 |
| Muons MS                                  | ±0<br>↑0                                 | 10<br>10                                | 10<br>10                               | ↓0<br>↑0                                 | -                                       | 10<br>10                                 | 10<br>10                                | ±0<br>↑0                                | 10<br>10                                 |
| Muons Sagitta BES                         | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | -                                       | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                 |
| Muons Sagitta BHO                         | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | -                                       | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                 |
| Muons Scale                               | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | -                                       | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                                | ↓0<br>↑0                                 |
| Modelling                                 | $\downarrow 0$<br>$\uparrow +10.42$      | $\downarrow 0$<br>$\uparrow +47.36$     | +0                                     | +0                                       | -                                       | $\downarrow 0$<br>$\uparrow + 36.01$     | $\downarrow 0$<br>$\uparrow +15.51$     | $\downarrow 0$<br>$\uparrow + 59.68$    | +0                                       |
|                                           | $\downarrow -7.98$<br>$\uparrow +99.35$  | $\downarrow -29.32$<br>$\uparrow +4.24$ | _<br>↑+7.18                            | <br>↑-10.40                              |                                         | $\downarrow -23.83$<br>$\uparrow -21.10$ | $\downarrow -12.28$<br>$\uparrow -6.49$ | $\downarrow -34.45$<br>$\uparrow +1.89$ |                                          |
|                                           | $\downarrow -35.81$                      | ↓-10.01                                 | $\downarrow -4.30$                     | ↓+8.28                                   | <br>↑-30.50                             | ↓+7.36                                   | ↓+14.74                                 | $\downarrow -10.55$                     | $\downarrow -4.78$                       |
| Matrix meth. (Take rate)                  | -                                        | -                                       |                                        | -                                        | $\downarrow +30.42$<br>$\uparrow +1.37$ | -                                        |                                         | -                                       |                                          |
| Matrix meth. (real rate)                  | _<br>                                    | _<br>↑_0.00                             | _<br>                                  | _<br>                                    | ↓-1.39                                  | -<br>                                    |                                         | _<br>                                   | _<br>↑_0.33                              |
| JES (Eta)                                 | $\downarrow -0.32$                       | $\downarrow -3.80$                      | $\downarrow -1.06$                     | $\downarrow -3.61$                       |                                         |                                          | ↓0<br>↓0                                | $\downarrow +0.01$<br>$\uparrow -0.19$  | $\downarrow -0.02$                       |
| Jets Energy Resolution                    | -                                        | -                                       | -                                      | -                                        |                                         | -                                        | -                                       | -                                       | -                                        |
| JES (In-situ analyses - N.P.1)            | 1-0.19<br>1-0.08                         | $\downarrow +4.79$                      | $\downarrow -3.49$                     | +10.38                                   | _                                       | $\downarrow +0.36$                       | $\downarrow -0.00$                      | $\downarrow -0.08$                      | $\downarrow +0.30$                       |
| JES (In-situ analyses - N.P.2)            | $\uparrow +0.00 \\ \downarrow -0.00$     | $\uparrow -0.03$<br>$\downarrow -3.77$  | $\uparrow +0.97$<br>$\downarrow -1.94$ | $\uparrow -0.05$<br>$\downarrow -3.57$   | _                                       |                                          |                                         | 10.01<br>1-0.00                         | ↑<br>+4.76                               |
| JES (In-situ analyses - N.P.3)            | $\uparrow -0.19 \\ \downarrow +0.00$     | $\uparrow -3.80$<br>$\downarrow +4.71$  | $\uparrow +0.57 \\ \downarrow +0.22$   | $\uparrow -3.62 \\ \downarrow +3.92$     | _                                       | $\uparrow 0$<br>$\downarrow 0$           | $\uparrow +0.05$<br>$\downarrow 0$      | $\uparrow +0.06 \\ \downarrow -0.00$    | $\uparrow -0.30 \\ \downarrow +0.01$     |

Таблица К.23. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR7 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                                 |                                            | ee                                        |                                        | م                                          |                                |                                        |                                         |
|-------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------|-----------------------------------------|
|                                                 | eν                                         | Ť                                         |                                        | tol                                        |                                | ý.                                     | 8                                       |
|                                                 | ↑                                          | *                                         |                                        | ele<br>ele                                 | ê                              | ↑                                      | 07                                      |
|                                                 | M                                          | ./z                                       | tt                                     | Sin                                        | Fal                            | M                                      | EL                                      |
| B-jet0 Eff (B filter)                           | ↑+2.26                                     | ^+3.07                                    | ↑+2.79                                 | ↑+3.23                                     | -                              | ↑+2.20                                 | ↑+2.35                                  |
| B-iet0 Eff (C filter)                           | ↓-2.26<br>↑+0.20                           | $\uparrow +4.81$                          | $\uparrow +3.70$                       | ↓ <u>-3.23</u><br>↑0                       | -                              | ↓-2.20<br>↑0                           | $\uparrow +14.47$                       |
| B jet0 Eff Extention                            | $\uparrow +0.20$<br>$\uparrow +0.08$       | $\downarrow -4.81$<br>$\uparrow +1.35$    | 1-3.70<br>$\uparrow+0.53$              | $\downarrow 0$<br>$\uparrow +0.81$         | -                              | ↓0<br>↑0                               | $\downarrow -14.47$<br>$\uparrow +1.65$ |
| D jeto Eff Extention                            | ↓-0.08<br>↑0                               | $\downarrow -1.35$<br>$\uparrow 0$        | $\downarrow -0.53$<br>$\uparrow 0$     | $\downarrow -0.81$<br>$\uparrow 0$         |                                | ↓0<br>↑0                               | $\downarrow -1.65$<br>$\uparrow 0$      |
| B-jeto Ell'Extention (C'Inter)                  | ↓0<br>↑+0.06                               | ↓0<br>↑0                                  | ↓0<br>↑0                               | $\downarrow 0$<br>$\uparrow +2.73$         | -                              | ↓0<br>↑0                               | ↓0<br>↑+3.64                            |
| B-jet0 Eff (Light filter)                       | $\downarrow -0.06$<br>$\uparrow \pm 0.22$  | ↓0<br>1+5.52                              | $\downarrow 0$<br>$\uparrow \pm 2.52$  | $\downarrow -2.73$<br>$\uparrow +3.99$     | -                              | ↓0<br>↑+7.88                           | $\downarrow -3.64$<br>$\uparrow +5.76$  |
| B-jet1 Eff (B filter)                           | $\downarrow -0.22$                         | $\downarrow -5.52$                        | $\downarrow -2.52$                     | ↓-3.99                                     | _                              | ↓-7.88                                 | $\downarrow -5.76$                      |
| B-jet1 Eff (C filter)                           | $\downarrow -21.33$<br>$\downarrow -21.33$ | $\downarrow -3.06$                        | $\downarrow -1.11$                     |                                            | _                              |                                        | $\downarrow -2.43$                      |
| B-jet1 Eff Extention                            | $\downarrow -0.01$                         | ↓0                                        | ↓0<br>↓0                               |                                            | _                              | ↓0                                     | ↓0                                      |
| B-jet1 Eff Extention (C filter)                 | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                   | -                              | ↑0<br>↓0                               | ↑0<br>↓0                                |
| B-jet1 Eff (Light filter)                       | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow +3.79 \\ \downarrow -3.79$   | ↑0<br>↓0                                   | _                              | $\uparrow 0$<br>$\downarrow 0$         | $\uparrow +2.25 \\ \downarrow -2.25$    |
| $t\bar{t}~{\rm CR}$ Electron Identification Eff | $\uparrow +1.35 \\ \downarrow -1.35$       | $\uparrow +1.24 \\ \downarrow -1.24$      | $\uparrow +0.90 \\ \downarrow -0.90$   | $\uparrow +1.27 \\ \downarrow -1.27$       | _                              | $\uparrow +1.36 \\ \downarrow -1.36$   | $\uparrow +1.54 \\ \downarrow -1.54$    |
| $t\bar{t}~{\rm CR}$ Electron Isolation Eff      | $\uparrow +0.21$<br>$\downarrow -0.21$     | $\uparrow +0.66$<br>$\downarrow -0.66$    | $\uparrow +0.23 \\ \downarrow -0.23$   | $\uparrow +0.78$<br>$\downarrow -0.78$     | _                              | $\uparrow +0.16$<br>$\downarrow -0.16$ | $\uparrow +3.26 \\ \downarrow -3.26$    |
| $t\bar{t}$ CR Electron Reconstruction Eff       | ↑+0.26<br>↓-0.26                           | $\uparrow +0.18$<br>$\downarrow -0.18$    | $\uparrow +0.18$<br>$\downarrow -0.18$ | $\uparrow +0.22$<br>$\downarrow -0.22$     | _                              | ↑+0.26<br>↓-0.26                       | $\uparrow +0.23$<br>$\downarrow -0.23$  |
| Electrons Scale                                 | ↑+0.01                                     | ↑-12.80                                   | ↑+0.03<br>↓ 11.20                      | ↑+7.09                                     | -                              | ↑0<br>↓0                               | ↑0<br>↓ 6.22                            |
| Electrons Resolution                            | ↑0<br>↓↓0.01                               | <br>                                      | ↑-11.35<br>↑-11.35                     | ↑0<br>↓↓ <b>7</b> 00                       | -                              | ↑0<br>10                               | ↑-6.33                                  |
| $t\bar{t}$ CB Electron Trigger Eff              | $\uparrow +0.01$<br>$\uparrow +0.25$       | ↓0<br>↑+0.21                              | $\uparrow^{+0.17}$                     | $\uparrow + 0.24$                          | -                              | ↓0<br>↑+0.25                           | ↓0<br>↑+0.23                            |
| Etmiss BES Parallel                             | ↓-0.25<br>↑0                               | $\uparrow -12.80$                         | $\downarrow -0.17$<br>$\uparrow +4.20$ | $\uparrow -0.24$<br>$\uparrow -8.18$       | -                              | ↓-0.25<br>↑0                           | $\uparrow 0.23$<br>$\uparrow 0$         |
| Etmics PES Perpendicular                        | ↓0<br>↑0                                   | $\downarrow -12.80$<br>$\uparrow -12.80$  | +4.20<br>$\uparrow -4.62$              | $\downarrow -8.18$<br>$\uparrow +9.46$     | -                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
|                                                 | ↓0<br>↑0                                   | $\downarrow -12.80$<br>$\uparrow -12.80$  | $\downarrow -4.62$<br>$\uparrow 0$     | $\downarrow +9.46$<br>$\uparrow -8.18$     |                                | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Etmiss Scale                                    | $\downarrow 0$<br>$\uparrow -0.23$         | ↓0<br>                                    | ↓0<br>↑-5.01                           | $\downarrow +9.03$<br>$\uparrow -16.46$    | -                              | ↓0<br>↑0                               | $\downarrow 0$<br>$\uparrow -6.38$      |
| Fat jet D2 Baseline                             | $\downarrow +0.40$                         | $\downarrow + 8.97$<br>$\uparrow - 22.80$ | +8.82                                  | $\downarrow 0$                             | -                              | ↓0<br>±0                               | $\downarrow +5.64$                      |
| Fat jet D2 Modelling                            | ↓+0.40                                     | ↓+9.42                                    | ↓+8.82                                 | $\downarrow +18.58$                        | _                              | ↓0<br>↓0                               | $\downarrow +5.64$                      |
| Fat jet D2 TotalStat                            | ↓0<br>↓0                                   | ↓0<br>↓0                                  | ↓+4.44                                 | ↓0<br>↓0                                   | _                              | ↓0                                     | ↓0<br>↓0                                |
| Fat jet D2 Tracking                             | $\uparrow -0.23 \\ \downarrow +0.40$       | $\uparrow 0 \\ \downarrow +8.97$          | $\uparrow 0 \\ \downarrow +4.44$       | ↑-8.58<br>↓0                               | _                              | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet Mass Baseline                           | $\uparrow 0$<br>$\downarrow -2.07$         | $^{\uparrow +98.06}_{\downarrow 0}$       | $\uparrow -24.36 \\ \downarrow -7.14$  | $\uparrow +9.03 \\ \downarrow -8.93$       | _                              | $\uparrow 0$<br>$\downarrow 0$         | $\uparrow -6.18 \\ \downarrow -6.38$    |
| Fat jet Mass Modelling                          | $\uparrow 0$<br>$\downarrow -2.33$         | $\uparrow +98.06 \\ \downarrow -12.80$    | $\uparrow -19.78 \\ \downarrow -10.12$ | $\uparrow +9.03 \\ \downarrow -0.44$       | _                              | ↑0<br>↓0                               | $\uparrow -13.53 \\ \downarrow -6.38$   |
| Fat jet Mass TotalStat                          | ↑0<br>↓+0.27                               | 10<br>10                                  | ↑0<br>⊥0                               | ↑0<br>↓0                                   | _                              | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet Mass Tracking                           | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -16.22$                      | ↑0<br>↓ - 8.93                             | _                              | ↑0<br>↓0                               | $\uparrow -6.18$                        |
| Fat jet pT Baseline                             | ↑+0.40<br>↓-0.23                           | ↑+8.97                                    | ↑+4.44                                 | $\uparrow +9.03$                           | _                              | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet pT Modelling                            | ↑0<br>↓ 0.22                               | ↑0<br>12.80                               | $\uparrow +4.44$                       | +9.03                                      | -                              | ↑0<br>↓0                               | ↑0<br>↓0                                |
| Fat jet pT TotalStat                            | <u>↓</u> =0.23                             | ↓ <u>+12.30</u>                           | <u>↓</u> =11.35<br>↑0                  | <u>↓−8.38</u><br>↑0                        | -                              | ↑0<br>10                               | <br>↑0                                  |
| Fat jet pT Tracking                             | ↓0<br>↑+0.40                               | ↓0<br>↑+8.97                              | ↓0<br>↑+4.44                           | ↓0<br>↑+9.03                               | _                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muons ID                                        | ↓-0.23<br>↑0                               | ↓-12.80<br>↑0                             | ↓-16.01<br>↑0                          | ↓-16.76<br>↑0                              | -                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muons ID<br>Muons MS                            | ↓0<br>↑0                                   | ↓0<br>↑0                                  | ↓0<br>↑0                               | ↓0<br>↑0                                   | -                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muona Saaitta DES                               | ↓0<br>↑0                                   | ↓0<br>↑0                                  | ↓0<br>↑0                               | ↓0<br>↑0                                   | -                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muons Sagitta RES                               | ↓0<br>↑0                                   | ↓0<br>↑0                                  | ↓0<br>↑0                               | ↓0<br>↑0                                   |                                | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muons Sagitta RHO                               | ↓0<br>↑0                                   | ↓0<br>↑0                                  | ↓0<br>↑0                               | <u>↓0</u><br>↑0                            | -                              | ↓0<br>↑0                               | ↓0<br>↑0                                |
| Muons Scale                                     | ↓0<br>↑+17.66                              | ↓0<br>↑+55.25                             | 10                                     | 10                                         | -                              | $\downarrow 0$<br>$\uparrow + 22.40$   | 10                                      |
| Modelling                                       | $\downarrow -13.85$                        | $\downarrow -32.61$                       | -                                      | -                                          | -                              | $\downarrow -15.23$                    | -                                       |
| tt CR PRW                                       | $\downarrow -35.11$                        | $\downarrow -14.14$                       | ↓-4.64                                 | $\downarrow +14.03$<br>$\downarrow +14.70$ | -                              | $\downarrow^{+0.49}_{+14.74}$          | $\downarrow +8.17$                      |
| Matrix meth. (fake rate)                        | _                                          | _                                         | _                                      |                                            | 1-19.48<br>$\downarrow +19.43$ |                                        | _                                       |
| Matrix meth. (real rate)                        |                                            |                                           |                                        |                                            | $\uparrow^{+0.48}_{-0.48}$     |                                        | _                                       |
| JES (Eta)                                       | $\uparrow +0.00 \\ \downarrow +0.00$       | $\uparrow -12.80$<br>$\downarrow +0.00$   | $\uparrow -11.29 \\ \downarrow -0.03$  | $\uparrow -8.17 \\ \downarrow +9.01$       | -                              | ↑0<br>↓0                               | $\uparrow -0.03$<br>$\downarrow +0.02$  |
| Jets Energy Resolution                          | ^++14.99<br>                               | ↑-49.66<br>-                              | ^++3.81<br>                            | ^++27.16<br>                               | _                              | ↑-100.00<br>-                          | ^−7.43<br>_                             |
| JES (In-situ analyses - N.P.1)                  | $\uparrow +0.02 \\ \downarrow +14.77$      | $\uparrow +0.10 \\ \downarrow -35.58$     | $\uparrow -0.10 \\ \downarrow -11.30$  | $\uparrow +7.25 \\ \downarrow +10.51$      | _                              | $\uparrow -0.06 \\ \downarrow -0.07$   | $\uparrow +0.03 \\ \downarrow -0.11$    |
| JES (In-situ analyses - N.P.2)                  | $\uparrow +0.00 \\ \downarrow -0.00$       | $\uparrow -0.01 \\ \downarrow -12.73$     | $\uparrow -0.04 \\ \downarrow -11.28$  | $\uparrow +8.97 \\ \downarrow -8.15$       |                                | ↑0<br>↓0                               | $\uparrow -6.35 \\ \downarrow -0.03$    |
| JES (In-situ analyses - N.P.3)                  | $\uparrow -0.24 \\ \downarrow +0.00$       | $\uparrow -0.01 \\ \downarrow -12.73$     | $\uparrow +4.43 \\ \downarrow -11.34$  | $\uparrow +7.87 \\ \downarrow +9.06$       |                                | $\uparrow +0.05$<br>$\downarrow 0$     | $\uparrow -6.33 \\ \downarrow -0.04$    |

Таблица К.24. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR8 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           |                                          | ee                                     |                                          | do                                   |         |                                        |                                        |
|-------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|---------|----------------------------------------|----------------------------------------|
|                                           | ev                                       | 1                                      |                                          | e to                                 |         | 800                                    | 006                                    |
|                                           |                                          | *~                                     |                                          | ngl                                  | ake     | Γ                                      | о<br>Г                                 |
|                                           | 2                                        | N                                      | tt                                       |                                      | Ĕ       | E                                      | E                                      |
| B-jet0 Eff (B filter)                     | $\uparrow +1.92 \\ \downarrow -1.92$     | $\uparrow +3.55$<br>$\downarrow -3.55$ | $\uparrow +3.19 \\ \downarrow -3.19$     | $\uparrow +4.03 \\ \downarrow -4.03$ | _       | $\uparrow +1.78 \\ \downarrow -1.78$   | $\uparrow +0.47$<br>$\downarrow -0.47$ |
| B-jet0 Eff (C filter)                     | $\uparrow +13.83$<br>$\downarrow -13.83$ | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             | -       | $\uparrow +18.30 \\ \downarrow -18.30$ | $\uparrow +25.74 \\ \downarrow -25.74$ |
| B-jet0 Eff Extention                      | $\uparrow +3.82 \\ \downarrow -3.82$     | $\uparrow +0.60 \\ \downarrow -0.60$   | $\uparrow +0.91 \\ \downarrow -0.91$     | $\uparrow +2.13 \\ \downarrow -2.13$ |         | $\uparrow +1.75 \\ \downarrow -1.75$   | $\uparrow +7.76 \\ \downarrow -7.76$   |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             | _       | ↑0<br>↓0                               | ↑0<br>↓0                               |
| B-jet0 Eff (Light filter)                 | $\uparrow +2.08 \\ \downarrow -2.08$     | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             | _       | ↑0<br>↓0                               | $\uparrow +1.81 \\ \downarrow -1.81$   |
| B-jet1 Eff (B filter)                     | $\uparrow +5.47 \\ \downarrow -5.47$     | $\uparrow +4.19 \\ \downarrow -4.19$   | $\uparrow +3.24 \\ \downarrow -3.24$     | $\uparrow +7.02 \\ \downarrow -7.02$ |         | $\uparrow +4.05 \\ \downarrow -4.05$   | $\uparrow +0.92 \\ \downarrow -0.92$   |
| B-jet1 Eff (C filter)                     | ↑+1.77<br>↓-1.77                         | $\uparrow +4.27 \\ \downarrow -4.27$   | ^+1.44<br>↓-1.44                         | <br>↓0                               | _       | $\uparrow +3.74 \\ \downarrow -3.74$   | $\uparrow +5.43 \\ \downarrow -5.43$   |
| B-jet1 Eff Extention                      | $\uparrow +0.36$<br>$\downarrow -0.36$   | ↑0<br>↓0                               | ↑0<br>↓0                                 | 0↑<br>10                             | _       | ↑0<br>↓0                               | ↑0<br>↓0                               |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                 | ↑0<br>↓0                               | <br>↑0<br>↓0                             | ↑0<br>↓0                             | _       | ^0<br>⊥0                               | ↑0<br>↓0                               |
| B-jet1 Eff (Light filter)                 | ↑+5.35                                   | ↑0<br>↓0                               | ↑+2.87                                   | ↑0<br>↓0                             | _       | ↑0<br>↓0                               | ↑+23.75                                |
| $t\bar{t}$ CR Electron Identification Eff | ↑+1.14<br>↓_1.14                         | ↑+0.91                                 | ↑+0.78                                   | ↑+0.99                               | _       | ↑+1.38                                 | ↑+1.49                                 |
| $t\bar{t}$ CR Electron Isolation Eff      | ↑+0.28                                   | ↑+0.55                                 | ↑+0.21                                   | ↑+0.51<br>↓ 0.51                     | _       | ↑+3.97                                 | $\uparrow +4.27$                       |
| $t\bar{t}$ CR Electron Reconstruction Eff | ↑+0.17<br>↓ 0.17                         | ↑+0.16                                 | ↓-0.21<br>↑+0.14                         | ↑+0.21                               |         | ↓-3.97<br>↑+0.25                       | ↓-4.27<br>↑+0.13                       |
| Electrons Scale                           | ↓ <u>−0.17</u><br>↑0                     | ↓ <u>−0.16</u><br>↑0                   | ↓-0.14<br>↑0                             | ↓ <u>−0.21</u><br>↑0                 | _       | ↓-0.25<br>↑0                           | ↓ <u>−0.13</u><br>↑0                   |
| Electrons Besolution                      | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                             | -       | ↓0<br>↑0                               | ↓0<br>↑0                               |
| $t\bar{t}$ CB Electron Trigger Eff        | $\downarrow 0$<br>$\uparrow +0.17$       | $\downarrow 0$<br>$\uparrow +0.18$     | $\downarrow 0$<br>$\uparrow +0.13$       | $\downarrow 0$<br>$\uparrow +0.15$   | -       | $\downarrow 0$<br>$\uparrow +0.18$     | $\downarrow 0$<br>$\uparrow +0.11$     |
| Etmiss RES Parallal                       | $\downarrow -0.17$<br>$\uparrow 0$       | $\downarrow -0.18$<br>$\uparrow 0$     | $\downarrow -0.13$<br>$\uparrow 0$       | $\downarrow -0.15$<br>$\uparrow 0$   | -       | $\downarrow -0.18$<br>$\uparrow 0$     | $\downarrow -0.11$<br>$\uparrow 0$     |
| Etmiss RES Perpendicular                  | $\downarrow 0$<br>$\uparrow -8.42$       | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                             |         | ↓0<br>↑0                               | ↓0<br>↑0                               |
| Etmiss RES Perpendicular                  | $\downarrow -8.42$<br>$\uparrow 0$       | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                             | -       | ↓0<br>↑0                               | ↓0<br>↑0                               |
|                                           | $\downarrow 0$<br>$\uparrow -8.07$       | ↓0<br>↑0                               | $\downarrow 0$<br>$\uparrow -11.74$      | ↓0<br>↑0                             |         | ↓0<br>↑0                               | ↓0<br>↑0                               |
| Fat jet D2 Baseline                       | $\downarrow +14.24$<br>$\uparrow -8.07$  | $\downarrow +14.39$<br>$\uparrow 0$    | $\downarrow +11.18$<br>$\uparrow -18.00$ | ↓0<br>↑0                             | -       | ↓+10.19<br>↑0                          | $\downarrow +12.81$<br>$\uparrow 0$    |
| Fat jet D2 Modelling                      | $\downarrow +14.24$<br>$\uparrow 0$      | $\downarrow +14.39$<br>$\uparrow 0$    | $\downarrow +16.48$<br>$\uparrow 0$      | +43.46                               | _       | $\downarrow +10.19$<br>$\uparrow 0$    | +27.00                                 |
| Fat jet D2 TotalStat                      | $\downarrow 0$<br>$\uparrow -8.07$       | <u>↓0</u>                              | ↓0<br>↑0                                 | ↓0<br>↑0                             | _       | $\downarrow +5.02$                     | ↓0<br>↑0                               |
| Fat jet D2 Tracking                       | $\downarrow +14.24$                      | $\downarrow +14.39$                    | ↓0<br>↓0                                 | ↓0<br>↓0                             | _       | ↓+5.02<br>★0                           | ↓0<br>↓1<br>↓1 61                      |
| Fat jet Mass Baseline                     | $\downarrow +17.06$                      | ↓0<br>↓0                               | ↓0<br>↓0                                 | ↓0<br>↓0                             | _       | ↓0<br>↓0                               | $\downarrow -5.77$                     |
| Fat jet Mass Modelling                    | $\downarrow +7.59$                       | +0<br>↓0                               | 1-0.37<br>1+5.07                         | +0<br>↓0                             | _       | +0<br>↓0                               | $\downarrow^{+0}_{+0.45}$              |
| Fat jet Mass TotalStat                    | +9.47                                    | +0<br>↓0                               | ↓0<br>↓0                                 | +0<br>↓0                             | _       | +0<br>↓0                               | +0<br>↓0                               |
| Fat jet Mass Tracking                     | $\uparrow -11.09 \\ \downarrow +7.59$    | ↑0<br>↓0                               | ↑-0.70<br>↓0                             | ↑0<br>↓0                             | _       | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -5.77$     |
| Fat jet pT Baseline                       | $\uparrow +97.19 \\ \downarrow -8.07$    | $\uparrow +14.39 \\ \downarrow 0$      | ↑0<br>↓0                                 | ↑0<br>↓0                             |         | $\uparrow +5.02 \\ \downarrow -4.70$   | ↑0<br>↓0                               |
| Fat jet pT Modelling                      | $\uparrow 0 \\ \downarrow -8.07$         | $\uparrow 0 \\ \downarrow 0$           | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow 0$         |         | $\uparrow +5.02$<br>$\downarrow 0$     | $\uparrow 0 \\ \downarrow 0$           |
| Fat jet pT TotalStat                      | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow 0$           | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow 0$         |         | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Fat jet pT Tracking                       | $\uparrow + 97.19 \\ \downarrow - 8.07$  | $\uparrow +14.39 \\ \downarrow 0$      | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow 0$         | _       | $\uparrow +5.02 \\ \downarrow -4.70$   | ↑0<br>↓0                               |
| Muons ID                                  | $\uparrow 0 \\ \downarrow 0$             | ↑0<br>↓0                               | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow 0$         |         | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons MS                                  | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             | _       | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RES                         | 0<br>↓0                                  | ↑0<br>↓0                               | 0<br>↓0                                  | 0<br>↓0                              | _       | ↑0<br>↓0                               | 0<br>↓0                                |
| Muons Sagitta RHO                         | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             |         | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Scale                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                             | -       | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Modelling                                 | ↑+11.40                                  | $\uparrow +56.70$                      | -                                        | -                                    | _       | -                                      | -                                      |
| $t\bar{t}$ CR PRW                         | ↑-4.76                                   | ↑+29.58                                | ↑-12.26                                  | ↑-18.24                              | _       | ↑+32.22                                | $\uparrow +26.96$                      |
| Matrix meth. (fake rate)                  | -                                        | -                                      | -                                        | -                                    | ↑-17.74 | -                                      |                                        |
| Matrix meth. (real rate)                  | -                                        | -                                      |                                          | -                                    | ↑+0.41  | -                                      | -                                      |
| JES (Eta)                                 | <br>↑-11.07                              |                                        |                                          |                                      | -       |                                        |                                        |
| Jets Energy Resolution                    | $\uparrow +64.65$                        | $\uparrow -0.00$<br>$\uparrow -0.33$   | $\uparrow -13.74$                        | $\uparrow +16.49$                    |         | $\uparrow -7.06$                       | $\uparrow -0.02$<br>$\uparrow -5.24$   |
| JES (In-situ analyses - N.P.1)            |                                          |                                        |                                          |                                      | -       |                                        |                                        |
| JES (In-situ analyses - N.P.2)            | 1 + 9.37<br>1 + 0.00                     | +0.11<br>+0.04                         | $\uparrow +0.12$<br>$\uparrow -0.05$     | 1 +0.08                              | -       | $\downarrow -4.61$<br>$\uparrow -0.02$ | $\uparrow -0.02$                       |
| JES (In-situ analyses - N.P.3)            | $\uparrow -2.43$                         | ↓+0.11<br>↑0                           | $\uparrow +0.12$<br>$\uparrow -0.01$     | ↓0<br>↑+0.04                         | -       | $\downarrow -4.68$<br>$\uparrow -0.03$ | $\downarrow -0.16$<br>$\uparrow +0.02$ |
| (                                         | $\downarrow -0.04$                       | $\downarrow \downarrow +0.12$          | $\downarrow +0.12$                       | 1 10                                 |         | $\downarrow +0.02$                     | ↓+0.01                                 |

Таблица К.25. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                            | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ບ<br>↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | top                                          | Q                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                     | g                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gle                                          | 10(                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 173                                                   | 500                                                    | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sin                                          | EL                                                     | EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EL                                                    | EL                                                     | EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B-jet0 Eff (B filter)                     | ↑+2.51<br>↓-2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+4.51<br>.1-4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑+3.78<br>↓-3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+4.51<br>↓-4.51                             | ↑+0.83<br>↓-0.83                                       | ↑+0.41<br>↓-0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ↑+1.61<br>↓-1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+1.70<br>↓-1.70                                      | ↑+0.98<br>↓-0.98                                       | ↑+1.01<br>↓-1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-jet0 Eff (C filter)                     | $\uparrow +16.64$<br>$\downarrow -16.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑+24.99<br>↓-24.99                                     | $\uparrow +11.22$<br>$\downarrow -11.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑+21.11<br>↓-21.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑+10.92<br>↓-10.92                                    | ↑+25.83<br>↓-25.83                                     | $\uparrow +17.69$<br>$\downarrow -17.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B-jet0 Eff Extention                      | $\uparrow +4.01$<br>$\downarrow -4.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow +2.77$<br>$\downarrow -2.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑+1.26<br>↓-1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+4.06<br>↓-4.06                             | $\uparrow +3.74$<br>$\downarrow -3.74$                 | $\uparrow +2.71$<br>$\downarrow -2.71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑+1.98<br>↓-1.98                                      | $\uparrow +11.48$<br>$\downarrow -11.48$               | $\uparrow +10.33$<br>$\downarrow -10.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>1.0                                              | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B-jet0 Eff (Light filter)                 | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | $\uparrow +10.12$<br>$\downarrow -10.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑+1.33<br>↓-1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+5.53<br>↓-5.53                                      | ↑+1.61<br>↓-1.61                                       | ↑+2.54<br>↓-2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-jet1 Eff (B filter)                     | ↑+3.59<br>↓-3.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑+4.35<br>↓-4.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+10.04<br>↓-10.04                           | ↑+5.85                                                 | ↑+0.25<br>↓-0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ↑+3.84<br>↓-3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+4.45<br>↓-4.45                                      | ↑+4.13<br>↓-4.13                                       | ↑+4.27<br>↓-4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-jet1 Eff (C filter)                     | ↑+4.44<br>↓-4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑+2.80<br>↓-2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑0<br>↓0                                     | ↑+1.27<br>↓-1.27                                       | ↑+17.17<br>↓-17.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+6.51<br>↓-6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+6.77<br>↓-6.77                                      | $\uparrow +6.70$<br>$\downarrow -6.70$                 | ↑+1.05<br>↓-1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-jet1 Eff Extention                      | ↑+0.90<br>↓-0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | $\uparrow +0.32 \\ \downarrow -0.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑+0.24<br>↓-0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑+0.50<br>↓-0.50                                      | ↑+0.33<br>↓-0.33                                       | ↑+0.16<br>↓-0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>⊥0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>⊥0                                              | ↑0<br>⊥0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B-jet1 Eff (Light filter)                 | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | $\uparrow +7.46 \\ \downarrow -7.46$                   | ↑+9.22<br>↓-9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\uparrow +5.81 \\ \perp -5.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ↑+8.02<br>↓-8.02                                      | ↑+5.98<br>↓-5.98                                       | $\uparrow +14.76 \\ \downarrow -14.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $t\bar{t}$ CR Electron Identification Eff | ↑+0.93<br>↓-0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+1.22<br>↓-1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow +0.74 \\ \downarrow -0.74$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑+0.96<br>↓-0.96                             | ↑+1.11<br>↓-1.11                                       | $\uparrow +1.57 \\ \downarrow -1.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\uparrow +1.49 \\ \downarrow -1.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow +1.45 \\ \downarrow -1.45$                  | ↑+1.35<br>↓-1.35                                       | ↑+1.20<br>↓-1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $t\bar{t}$ CR Electron Isolation Eff      | $\uparrow +0.49 \\ \downarrow -0.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow +2.00 \\ \downarrow -2.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow +0.11 \\ \downarrow -0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑+1.08<br>↓-1.08                             | $\uparrow +2.66 \\ \downarrow -2.66$                   | $\uparrow +3.73 \\ \downarrow -3.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑+3.28<br>↓-3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\uparrow +3.55 \\ \downarrow -3.55$                  | $\uparrow +3.67 \\ \downarrow -3.67$                   | $\uparrow +4.47 \\ \downarrow -4.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $t\bar{t}$ CR Electron Reconstruction Eff | $\uparrow +0.16 \\ \downarrow -0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow +0.11 \\ \downarrow -0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow +0.15 \\ \downarrow -0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow +0.22 \\ \downarrow -0.22$         | $\uparrow +0.31 \\ \downarrow -0.31$                   | $\uparrow +0.17 \\ \downarrow -0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑+0.28<br>↓-0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\uparrow +0.19 \\ \downarrow -0.19$                  | $\uparrow +0.18 \\ \downarrow -0.18$                   | $\uparrow +0.18 \\ \downarrow -0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Electrons Scale                           | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                     | ↑0<br>⊥0                                               | ↑0<br>↓+0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>⊥0                                              | ↑0<br>⊥0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Electrons Resolution                      | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $t\bar{t}$ CR Electron Trigger Eff        | ↑+0.13<br>↓-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ↑+0.08<br>↓-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow +0.12$<br>$\downarrow -0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow +0.12$<br>$\downarrow -0.12$       | $\uparrow +0.27 \\ \downarrow -0.27$                   | $\uparrow +0.15 \\ \downarrow -0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\uparrow +0.21 \\ \downarrow -0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow +0.17$<br>$\downarrow -0.17$                | ↑+0.14<br>↓-0.14                                       | ↑+0.13<br>↓-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Etmiss RES Parallel                       | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>⊥0                                     | ↑0<br>⊥0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>⊥0                                              | ↑0<br>⊥0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Etmiss RES Perpendicular                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Etmiss Scale                              | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓+49.18                                | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet D2 Baseline                       | $\uparrow -20.22 \\ \downarrow +35.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow 0 \\ \downarrow +66.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑-10.23<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ↑0<br>↓0                                     | $\uparrow -14.06 \\ \downarrow +5.77$                  | $\uparrow -54.09 \\ \downarrow +5.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ↑0<br>↓+10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\uparrow 0 \\ \downarrow +5.41$                      | $\uparrow -2.90 \\ \downarrow +11.45$                  | $\uparrow -8.45 \\ \downarrow +4.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat jet D2 Modelling                      | $\uparrow -20.22 \\ \downarrow +35.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑0<br>↓+66.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\uparrow -22.43 \\ \downarrow +10.34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑0<br>↓0                                     | $\uparrow -14.06 \\ \downarrow +5.77$                  | $\uparrow -54.09 \\ \downarrow +5.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ↑0<br>↓+10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ↑0<br>↓+5.41                                          | $\uparrow -2.90 \\ \downarrow +11.45$                  | $\uparrow -8.45 \\ \downarrow +4.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat jet D2 TotalStat                      | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet D2 Tracking                       | $\uparrow -20.22 \\ \downarrow +35.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow 0 \\ \downarrow +66.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | $\uparrow -6.02 \\ \downarrow 0$                       | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet Mass Baseline                     | $\uparrow 0 \\ \downarrow +23.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑+10.23<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ↑0<br>↓0                                     | $\uparrow -7.33 \\ \downarrow 0$                       | $\uparrow 0$<br>$\downarrow -3.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\uparrow 0 \\ \downarrow +15.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ↑-3.13<br>↓0                                          | ↑0<br>↓+0.23                                           | $\uparrow -10.23 \\ \downarrow +0.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fat jet Mass Modelling                    | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑+10.23<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ↑0<br>↓0                                     | $\uparrow -7.33$<br>$\downarrow 0$                     | $\uparrow -49.84 \\ \downarrow -3.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\uparrow 0$<br>$\downarrow +4.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\uparrow -3.13$<br>$\downarrow 0$                    | $\uparrow 0$<br>$\downarrow +0.23$                     | $\uparrow -6.28 \\ \downarrow -3.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat jet Mass TotalStat                    | $\uparrow 0 \\ \downarrow +23.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | $\uparrow -7.33$<br>$\downarrow 0$                     | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet Mass Tracking                     | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\uparrow -1.36$<br>$\downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                     | $\uparrow -7.33$<br>$\downarrow 0$                     | $\uparrow 0$<br>$\downarrow -3.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\uparrow 0$<br>$\downarrow +4.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑-3.13<br>↓0                                          | $\uparrow 0$<br>$\downarrow +0.23$                     | $\uparrow -3.95 \\ \downarrow -3.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat jet pT Baseline                       | $\uparrow +35.65 \\ \downarrow -20.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow + 66.05 \\ \downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑+49.18<br>↓0                                | $\uparrow 0 \\ \downarrow -6.02$                       | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\uparrow 0 \\ \downarrow +5.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ↑0<br>↓0                                              | $\uparrow 0$<br>$\downarrow 0$                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet pT Modelling                      | $\uparrow 0$<br>$\downarrow -20.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\uparrow 0$<br>$\downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | $\uparrow 0$<br>$\downarrow 0$                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | $\uparrow 0$<br>$\downarrow 0$                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet pT TotalStat                      | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\uparrow 0$<br>$\downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | $\uparrow 0$<br>$\downarrow 0$                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | $\uparrow 0$<br>$\downarrow 0$                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fat jet pT Tracking                       | $\uparrow +35.65 \\ \downarrow -20.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow + 66.05 \\ \downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑+49.18<br>↓0                                | $\uparrow 0$<br>$\downarrow -6.02$                     | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Muons ID                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Muons MS                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Muons Sagitta RES                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Muons Sagitta RHO                         | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Muons Scale                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑0<br>↓0                                     | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ↑0<br>↓0                                              | ↑0<br>↓0                                               | ↑0<br>↓0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Modelling                                 | $\uparrow +11.83 \\ \downarrow -10.52 \\ \downarrow + 8.62 \\ \downarrow + 10.52 \\ \downarrow + 10.$ | $\uparrow + 51.13 \\ \downarrow - 30.73 \\ \downarrow - 41.25 \\ \downarrow - 30.73 \\ \downarrow - $ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                            | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                     | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $t\bar{t}$ CR PRW                         | $\uparrow +3.66 \\ \downarrow -13.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\uparrow -41.66 \\ \downarrow +51.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\uparrow -11.31 \\ \downarrow +19.15 \\ \downarrow 0.00 \\ \downarrow 0.00$ | $\uparrow -15.59 \\ \downarrow -0.15$        | $\uparrow +14.14 \\ \downarrow +3.26$                  | $\uparrow +25.77 \\ \downarrow -22.87 $ | $\uparrow -17.42 \\ \downarrow +18.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\uparrow -12.73 \\ \downarrow +10.64$                | $\uparrow +19.64 \\ \downarrow -11.61$                 | $\uparrow -8.76$<br>$\downarrow +5.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| JES (Eta)                                 | $\uparrow +0.00 \\ \downarrow -0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow -0.02$<br>$\downarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\uparrow -0.00 \\ \downarrow -0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T0<br>↓+0.10                                 | $\uparrow -0.02$<br>$\downarrow -0.01$                 | $\uparrow -0.02 \\ \downarrow -0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\uparrow -0.01$<br>$\downarrow -3.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ↑+0.14<br>↓+0.00                                      | $\uparrow^{+0.01}_{-0.00}$                             | $\uparrow +0.04 \\ \downarrow +0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Jets Energy Resolution                    | $\uparrow +20.32$<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑+0.02<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ↑-9.64<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ↑+1.50<br>_                                  | ↑-7.83<br>_                                            | ↑-3.52<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ↑+13.66<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑-1.83<br>-                                           | ↑-2.55<br>-                                            | ↑+3.14<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JES (In-situ analyses - N.P.1)            | 1+0.04<br>1-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1+0.02<br>1-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-0.00<br>1-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 - 52.21<br>1 - 0.16                        | 1-0.02<br>1-0.17                                       | 1+1.50<br>1+0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3.76<br>1+0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1+3.50<br>$\downarrow -10.62$                         | 1+0.08<br>1-4.78                                       | 1+0.21<br>1+0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| JES (In-situ analyses - N.P.2)            | $\uparrow +0.00 \\ \downarrow -0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\downarrow^{\uparrow 0}$<br>$\downarrow^{-0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\uparrow -0.07$<br>$\downarrow -0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ↑+49.28<br>↓0                                | $\uparrow +0.03 \\ \downarrow -0.02 \\ \uparrow +0.02$ | $\uparrow +0.00 \\ \downarrow -0.01 \\ \uparrow +0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow -3.56 \\ \downarrow -0.02 \\ \downarrow -0$ | $\uparrow +3.62 \\ \downarrow +0.11 \\ \uparrow 0.01$ | $\uparrow +0.02 \\ \downarrow -0.00 \\ \uparrow +0.00$ | $\uparrow +0.02 \\ \downarrow -0.03 \\ \downarrow +0.02 \\ \downarrow +0$ |
| JES (In-situ analyses - N.P.3)            | $\begin{vmatrix} \uparrow -0.00\\ \downarrow 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\downarrow^{\uparrow 0}$<br>$\downarrow^{-0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\downarrow^{\uparrow 0}_{\downarrow 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\downarrow^{\uparrow +0.14}_{\downarrow 0}$ | $\uparrow^{+0.03}_{\downarrow -0.01}$                  | $\uparrow^{+0.05}_{+0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow -3.67 \\ \downarrow -0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\uparrow -0.01 \\ \downarrow +0.11$                  | $ _{\downarrow+0.01}^{\uparrow+0.02}$                  | $\uparrow^{+0.02}_{+0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Таблица К.26. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в TCR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                           | 0                                        | 0                                       | 0                                      | 0                                        | 0                                      | 0                                        | 0                                       |
|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
|                                           | 250                                      | 275                                     | 300                                    | 325                                      | 350                                    | 375                                      | 400                                     |
|                                           | EL                                       | EL                                      | EL                                     | EL                                       | EL                                     | EL                                       | EL                                      |
| B-jet0 Eff (B filter)                     | $\uparrow +2.35$<br>$\downarrow -2.35$   | ↑+0.96                                  | ↑+0.97                                 | ↑+1.57<br>↓-1.57                         | $\uparrow +2.04$<br>$\downarrow -2.04$ | ↑+1.01                                   | $\uparrow +0.42$<br>$\downarrow -0.42$  |
| B-jet0 Eff (C filter)                     | ↑+10.94                                  | ↑+10.08                                 | $\uparrow +10.44$                      | ↑+11.48                                  | $\uparrow +10.28$                      | ↑+14.80                                  | ↑+2.77<br>↓-2.77                        |
| B-jet0 Eff Extention                      | $\uparrow +15.54$<br>$\downarrow -15.54$ | ↑+8.78                                  | ↑+3.90                                 | $\uparrow +16.55$<br>$\downarrow -16.55$ | $\uparrow +10.26$<br>$\uparrow +10.86$ | $\uparrow +18.26$<br>$\downarrow -18.26$ | $\uparrow +4.78$<br>$\downarrow -4.78$  |
| B-jet0 Eff Extention (C filter)           | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                |
| B-jet0 Eff (Light filter)                 | ↑0<br>↓0                                 | ↑+7.04<br>↓ 7.04                        | ↑+7.63                                 | ↑+3.18                                   | ↑+5.74                                 | ↑+3.07                                   | $\uparrow +14.63$                       |
| B-jet1 Eff (B filter)                     | ↑+5.58                                   | ↑+3.79<br>↓ 2.70                        | ↑+2.00<br>↓ 2.00                       | ↑+3.62<br>↓ 2.62                         | $\uparrow +4.15$                       | ↑+2.65                                   | ↑+4.25                                  |
| B-jet1 Eff (C filter)                     | ↑0<br>↓0                                 | $\uparrow +3.66$                        | ↑+13.07                                | ↑+4.78                                   | ↑+5.44<br>↓ 5.44                       | ↑+12.89<br>↓ 12.80                       | ↑+2.35<br>↓ 2.25                        |
| B-jet1 Eff Extention                      | ↑0<br>↓0                                 | ↑+0.16<br>↓ 0.16                        | ↑+0.94                                 | ↑0<br>↓0                                 | ↑+0.22<br>↓ 0.22                       | ↑+0.51<br>↓ 0.51                         | ↑0<br>↓0                                |
| B-jet1 Eff Extention (C filter)           | ↑0<br>↓0                                 | <u>↓−0.10</u><br>↑0                     | <u>↓</u> −0.94<br>↑0                   | ↑0<br>↓0                                 | ↑0<br>↓0                               | <u>↓</u> =0.31<br>↑0                     | ↑0<br>↓0                                |
| B-jet1 Eff (Light filter)                 | ↑+5.69                                   | ↑+8.70                                  | ↑+9.02                                 | ↑+8.73                                   | ↑0<br>10                               | <u>↓0</u><br>↑0                          | <u>↓0</u><br>↑0                         |
| $t\bar{t}$ CR Electron Identification Eff | ↓-5.69<br>↑+1.60                         | ↓ <u>-8.70</u><br>↑+1.54                | 1 +1.55                                | ↑+1.79                                   | ↑+1.33                                 | ↑+1.36                                   | ↑+1.07                                  |
| $t\bar{t}$ CR Electron Isolation Eff      | ↓-1.60<br>↑+3.14                         | ↓-1.54<br>↑+4.66                        | 1.55                                   | 1.79                                     | ↑+3.69                                 | 1.36                                     | ↑+4.53                                  |
| $t\bar{t}$ CR Electron Reconstruction Eff | $\uparrow +0.24$                         | $\uparrow +0.18$                        | $\uparrow -4.29$<br>$\uparrow +0.16$   | ↓ <u>-3.99</u><br>↑+0.24                 | 1 +0.24                                | ↓-3.63<br>↑+0.25                         | $\uparrow +0.15$                        |
| Electrons Scale                           | ↓ <u>-0.24</u><br>↑0                     | <u>↓</u> =0.18<br>↑0                    | ↓ <u>−0.16</u><br>↑0                   | ↓ <u>−0.24</u><br>↑0                     | ↑0<br>↓0                               | ↓ <u>−0.25</u><br>↑0                     | ↓ <u>+0.15</u><br>↑+7.07                |
| Electrons Resolution                      | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑+7.07                            |
| $t\bar{t}$ CR Electron Trigger Eff        | ↓0<br>↑+0.21                             | ↓0<br>↑+0.13                            | ↓0<br>↑+0.13                           | ↓0<br>↑+0.23                             | ↓0<br>↑+0.20                           | ↓0<br>↑+0.21                             | ↓0<br>↑+0.12                            |
| Etmiss RES Parallel                       | ↓ <u>-0.21</u><br>↑0                     | ↓ <u>−0.13</u><br>↑0                    | ↓ <u>−0.13</u><br>↑0                   | ↓ <u>−0.23</u><br>↑0                     | ↓ <u>−0.20</u><br>↑0                   | ↓-0.21<br>↑0                             | ↓-0.12<br>↑0                            |
| Etmiss RES Perpendicular                  | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | 10<br>10                                 | 10<br>10                               | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Etmiss Scale                              | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Fat jet D2 Baseline                       | ↑0<br>↑0                                 | ↓0<br>↑-5.47                            | ↓0<br>↑0                               | ↓0<br>↑-12.67                            | 1 1 −6.38                              | ↑0<br>↑0                                 | 1 1 − 3.33                              |
| Fat jet D2 Modelling                      | $\uparrow +30.79$<br>$\uparrow -5.43$    | $\uparrow +10.04$<br>$\uparrow -5.47$   | ↓0<br>↑0                               | ↓0<br>↑-12.67                            | $\uparrow -6.38$                       | ↓+15.05<br>↑0                            | ↓+4.31<br>↑-3.33                        |
| Fat jet D2 TotalStat                      | ↓+30.79<br>↑0                            | ↓+10.04<br>↑0                           | ↓0<br>↑0                               | ↓0<br>↑-7.15                             | $\uparrow -6.38$                       | ↓+15.05<br>↑0                            | ↓+4.31<br>↑0                            |
| Fat jet D2 Tracking                       | ↓+16.58<br>↑0                            | 10<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | $\uparrow -6.38$                       | ↓+9.44<br>↑0                             | ↓0<br>↑0                                |
| Fat jet Mass Baseline                     | $\uparrow +16.58$<br>$\uparrow +9.71$    | $\uparrow -33.48$                       | ↓0<br>↑0                               | ↓0<br>↑+5.01                             | ↓0<br>↑-13.55                          | ↓0<br>↑+9.70                             | ↓+4.31<br>↑0                            |
| Fat jet Mass Modelling                    | 1-5.34<br>1+9.71                         | $\uparrow -2.61$                        | $\uparrow^{-13.44}$                    | ↓-5.53<br>↑0                             | ↓0<br>↑-7.78                           | ↓-5.59<br>↑0                             | ↓+3.63<br>↑0                            |
| Fat jet Mass TotalStat                    | ↓-5.34<br>↑0                             | ↓0<br>                                  | ↓-13.44<br>↑0                          | ↓-5.53<br>↑0                             | ↓0<br>↑-7.78                           | ↓-10.40<br>↑0                            | ↓0<br>↑0                                |
| Fat jet Mass Tracking                     | $\downarrow 0$<br>$\uparrow +9.71$       | $\uparrow -2.61$                        | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑-7.78                           | ↓0<br>↑0                                 | ↓+3.63<br>↑0                            |
| Fat iet nT Baseline                       | $\downarrow -5.34$<br>$\uparrow +11.45$  | $\downarrow 0$<br>$\uparrow +3.56$      | ↓-13.44<br>↑0                          | ↓-5.53<br>↑0                             | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑+4.31                            |
| Fat jet pT Modelling                      | ↓0<br>↑0                                 | ↓0<br>                                  | ↓0<br>↑0                               | ↓0<br>↑0                                 | $\uparrow^{-6.38}$                     | ↓0<br>↑0                                 | ↓0<br>↑+4.31                            |
| Fat jet pT TotalStat                      | $\downarrow 0$<br>$\uparrow +11.45$      | ↓0<br>↑0                                | ↓0<br>↑0                               | ↓0<br>↑0                                 | $\uparrow 0$                           | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Fat jet pT Tracking                       | ↓0<br>↑+11.45                            | $\downarrow 0$<br>$\uparrow +3.56$      | ↓0<br>↑0                               | ↓0<br>↑0                                 | $\uparrow 0$                           | ↓0<br>↑0                                 | ↓0<br>↑+4.31                            |
| Muons ID                                  | ↓0<br>↑0                                 | ↓0<br>                                  | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓ <u>-6.38</u><br>↑0                   | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Muons MS                                  | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | 10<br>10                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Muons Sagitta BES                         | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | 10<br>10                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Muons Sagitta BHO                         | ↓0<br>↑0                                 | ↓0<br>↑0                                | ↓0<br>↑0                               | 10<br>10                                 | ↓0<br>↑0                               | ↓0<br>↑0                                 | ↓0<br>↑0                                |
| Muons Scale                               | ↓0<br>↑0                                 | ↓0<br>↑0                                | 10<br>10                               | 10<br>10                                 | 10<br>10                               | 10<br>10                                 | ↓0<br>↑0                                |
| tī CR PRW                                 | $\uparrow -4.41$                         | $\uparrow +29.97$                       | 1 + 0                                  | ↓0<br>↑-11.60                            | 1 +0                                   | ↓0<br>↑-7.36                             | ↓0<br>↑+31.09                           |
| JES (Eta)                                 | $\uparrow -3.22$<br>$\uparrow +0.00$     | $\downarrow -10.01$<br>$\uparrow +0.10$ | $\downarrow +1.46$<br>$\uparrow -0.00$ | +8.40<br>$\uparrow -0.01$                | +3.56<br>$\uparrow -0.00$              | +3.86<br>$\uparrow -0.01$                | $\downarrow -28.32$<br>$\uparrow +0.00$ |
| Jets Energy Resolution                    | $\uparrow +8.44$                         | +0.00<br>+0.37                          | $\uparrow +0.00$<br>$\uparrow -0.18$   | $\uparrow -0.01$<br>$\uparrow -0.26$     | $\uparrow +0.01$<br>$\uparrow +0.66$   | $\uparrow -0.01$<br>$\uparrow -0.05$     | +6.94<br>+6.72                          |
| JES (In-situ analyses - N.P.1)            |                                          |                                         |                                        |                                          |                                        |                                          |                                         |
| JES (In-situ analyses - N.P.2)            | +0.08                                    | $\downarrow -5.29$<br>$\uparrow +3.47$  | $\uparrow +0.06$<br>$\uparrow +0.20$   | 1 +0.03                                  | $\uparrow +0.09$<br>$\uparrow +5.56$   | ↓-0.05                                   | +7.01<br>$\uparrow +0.02$               |
| JES (In-situ analyses - N.P.3)            | $\uparrow +0.01$<br>$\uparrow +0.03$     | $\uparrow +0.23$<br>$\uparrow +0.02$    | ↓ <u>+0.00</u><br>↑+0.00               | $\uparrow +0.01$<br>$\uparrow +0.04$     | $\uparrow -0.03$<br>$\uparrow -0.15$   | $\uparrow +0.03$<br>$\uparrow +0.01$     | $\uparrow + 0.21$                       |

Таблица К.27. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR1 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | $V \to e\nu$                               | $Z/\gamma*  ightarrow ee$                | t                                          | Single top                              | fake                                    | Diboson                                      | $V \to \tau \nu$                         | $Z/\gamma* 	o 	au\gamma$               | 3L 0100                                |
|-------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|
| Default Electron Identification Eff | ↑+1.48                                     | ↑+1.59                                   | ↑+1.06                                     | ^++2.46                                 | - H                                     | ↑-3.69                                       | ↑+2.47                                   | +1.70                                  | +<br>+1.48                             |
| Default Electron Isolation Eff      | $\downarrow -1.48$<br>$\uparrow +1.42$     | $\downarrow -1.59$<br>$\uparrow +1.33$   | $\downarrow -1.06$<br>$\uparrow +0.81$     | $\downarrow -2.46$<br>$\uparrow +1.44$  | -                                       | $\downarrow +3.69$<br>$\uparrow +45.73$      | $\downarrow -2.47$<br>$\uparrow +5.00$   | $\downarrow -1.70$<br>$\uparrow +2.00$ | $\downarrow -1.48$<br>$\uparrow +4.16$ |
| Default Electron Reconstruction Eff | $\downarrow -1.42$<br>$\uparrow +0.25$     | $\downarrow -1.33$<br>$\uparrow +0.26$   | $\downarrow -0.81$<br>$\uparrow +0.20$     | $\downarrow -1.44$<br>$\uparrow +0.23$  | -                                       | $\downarrow -45.73$<br>$\uparrow -0.27$      | $\downarrow -5.00$<br>$\uparrow +0.26$   | $\downarrow -2.00$<br>$\uparrow +0.24$ | $\downarrow -4.16$<br>$\uparrow +0.21$ |
| Electron Ceele                      | $\downarrow -0.25$<br>$\uparrow +0.73$     | $\downarrow -0.26$<br>$\uparrow +43.55$  | $\downarrow -0.20$<br>$\uparrow +6.72$     | $\downarrow -0.23$<br>$\uparrow +32.63$ |                                         | ↓+0.27<br>↑0                                 | $\downarrow -0.26$<br>$\uparrow 0$       | $\downarrow -0.24$<br>$\uparrow 0$     | $\downarrow -0.21$<br>$\uparrow +3.54$ |
| Electrons Scale                     | $\downarrow -4.78$<br>$\uparrow +0.59$     | $\downarrow -23.75$<br>$\uparrow -4.62$  | ↓+6.70<br>↑0                               | ↓0<br>↑0                                |                                         | $\downarrow +1576.21$<br>$\uparrow +1576.21$ | ↓0<br>↑0                                 | ↓0<br>↑0                               | $\downarrow -4.89$<br>$\uparrow +0.43$ |
| Electrons Resolution                | $\downarrow -4.10$<br>$\uparrow +0.24$     | $\downarrow -2.68$<br>$\uparrow +0.29$   | $\downarrow +6.70$<br>$\uparrow +0.17$     | $\downarrow 0$<br>$\uparrow +0.25$      | -                                       | $\downarrow +159.50$<br>$\uparrow -0.57$     | $\downarrow 0$<br>$\uparrow +0.25$       | ↓0<br>↑+0.18                           | $\downarrow -0.94$<br>$\uparrow +0.18$ |
| Default Electron Trigger Eff        | $\downarrow -0.24$<br>$\uparrow +4.78$     | $\downarrow -0.29$<br>$\uparrow -41.32$  | $\downarrow -0.17$<br>$\uparrow -6.33$     | $\downarrow -0.25$<br>$\uparrow 0$      | -                                       | $\downarrow +0.57$<br>$\uparrow +1576.21$    | $\downarrow -0.25$<br>$\uparrow 0$       | $\downarrow -0.18$<br>$\uparrow 0$     | $\downarrow -0.18$<br>$\uparrow -0.70$ |
| Etmiss RES Parallel                 | $\downarrow +4.78$<br>$\uparrow -5.22$     | $\downarrow -41.32$<br>$\uparrow -27.78$ | $\downarrow -6.33$<br>$\uparrow -10.58$    | <u>↓0</u><br>↑0                         | -                                       | $\downarrow +1576.21$                        | <u>↓0</u><br>↑0                          | ↓0<br>↑0                               | $\downarrow -0.70$<br>$\uparrow -0.66$ |
| Etmiss RES Perpendicular            | $\downarrow -5.22$                         | $\downarrow -27.78$                      | $\downarrow -10.58$                        |                                         | _                                       |                                              | ↓0<br>↓0                                 |                                        | $\downarrow -0.66$                     |
| Etmiss Scale                        | $\downarrow +8.01$                         | $\downarrow +39.11$                      | ↓+6.70                                     | ↓+32.63                                 | _                                       |                                              | 10<br>10                                 |                                        | $\downarrow -0.78$                     |
| Fat jet D2 Baseline                 | $\downarrow +9.61$                         | $1.98 \\ \downarrow +2.55$               | +0<br>↓0                                   | 10<br>10                                | _                                       | 10                                           | +0<br>↓0                                 | 10<br>10                               | 1-3.69<br>$\downarrow +4.25$           |
| Fat jet D2 Modelling                | $\uparrow -17.79 \\ \downarrow +10.01$     | $\uparrow -3.32 \\ \downarrow +7.18$     | ↑0<br>↓0                                   | ↑0<br>↓0                                | -                                       | ↑0<br>↓0                                     | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow -4.68 \\ \downarrow +5.46$   |
| Fat jet D2 TotalStat                | ↑-15.06<br>↓0                              | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                | -                                       | ↑0<br>↓0                                     | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow -0.11 \\ \downarrow +0.30$   |
| Fat jet D2 Tracking                 | $\uparrow -15.06 \\ \downarrow +7.81$      | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                | _                                       | ↑0<br>↓0                                     | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow -0.10 \\ \downarrow +0.81$   |
| Fat jet Mass Baseline               | $\uparrow +20.36 \\ \downarrow -13.03$     | $\uparrow -19.61 \\ \downarrow +23.40$   | $\uparrow +6.41 \\ \downarrow +7.63$       | $\uparrow -22.05 \\ \downarrow 0$       |                                         | $\uparrow 0$<br>$\downarrow +1590.97$        | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow +1.30 \\ \downarrow -0.67$   |
| Fat jet Mass Modelling              | $\uparrow +20.36$<br>$\downarrow -13.47$   | $\uparrow -13.66$<br>$\downarrow +16.92$ | $\uparrow +19.05 \\ \downarrow +13.36$     | ↑0<br>⊥0                                | _                                       | ↑0<br>⊥0                                     | ↑0<br>⊥0                                 | ↑0<br>⊥0                               | $\uparrow +0.60$<br>$\downarrow -0.22$ |
| Fat jet Mass TotalStat              | ↑0<br>.1.0                                 | ↑-1.39<br>↓0                             | <u>↑</u> 0<br>↓0                           | ↑0<br>↓0                                | _                                       | ↑0<br>.1.0                                   | ↑0<br>↓0                                 | ↑0<br>.1.0                             | $\uparrow -0.09$                       |
| Fat jet Mass Tracking               | $\uparrow + 23.76$<br>$\downarrow - 20.12$ | $\uparrow -2.77$<br>+3.89                | $\uparrow + 19.05$<br>$\downarrow + 13.36$ | ↑0<br>↓0                                | _                                       | ↑0<br>.1.0                                   | ↑0<br>↓0                                 | ↑0<br>.1.0                             | $\uparrow +1.36$<br>++0.10             |
| Fat jet pT Baseline                 | $\uparrow +107.05$<br>$\downarrow -12.35$  | $\uparrow +19.87$<br>$\downarrow -3.53$  | $\uparrow +14.29$<br>$\downarrow -17.18$   | ↑+29.96                                 | _                                       | ↑0<br>↓ = 100.00                             | ↑0<br>↓0                                 | ↑0<br>↓0                               | $\uparrow +1.88$<br>$\downarrow -0.59$ |
| Fat jet pT Modelling                | ↑+23.04<br>↓-15.06                         | ↑0<br>↓0                                 | ↑+7.85                                     | ↑0<br>↓0                                | _                                       | $\uparrow 0$<br>$\downarrow -100.00$         | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑+1.35                                 |
| Fat jet pT TotalStat                | ↑+15.23                                    | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                | -                                       | 100.00<br>10                                 | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑+0.63                                 |
| Fat jet pT Tracking                 | ↑+23.04<br>↓ 11.87                         | ↑0<br>↓0                                 | ↑+7.85                                     | ↑0<br>↓0                                | -                                       | 10<br>10                                     | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑+1.54<br>↓ 0.52                       |
| Muons ID                            | ↑0<br>↓0                                   | ↑0<br>↓0                                 | ↑0<br>↓0                                   | <u>+0</u><br>↑0                         | -                                       | 10<br>10                                     | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons MS                            | 10<br>10                                   | 10<br>10                                 | ±0<br>↑0                                   | ±0<br>↑0                                | -                                       | 10<br>10                                     | ±0<br>↑0                                 | ±0<br>↑0                               | ↑0<br>10                               |
| Muons Sagitta RES                   | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                                   | ±0<br>↑0                                | -                                       | 10<br>10                                     | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                               |
| Muons Sagitta BHO                   | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                                   | ↓0<br>↑0                                | -                                       | ↓0<br>↑0                                     | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                               |
| Muons Scale                         | ↓0<br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                                   | ↓0<br>↑0                                | -                                       | ↓0<br>↑0                                     | ↓0<br>↑0                                 | ↓0<br>↑0                               | ↓0<br>↑0                               |
| Modelling                           | ↓0<br>↑+3.23                               | $\downarrow 0$<br>$\uparrow +47.94$      | $\downarrow 0$<br>$\uparrow +6.53$         | +0                                      | -                                       | $\uparrow +257.71$                           | $\downarrow 0$<br>$\uparrow +6.99$       | $\downarrow 0$<br>$\uparrow +59.22$    | +0                                     |
| Default PBW                         | $\downarrow -3.39$<br>$\uparrow -13.07$    | $\uparrow -31.30$<br>$\uparrow -10.14$   | $\downarrow -9.50$<br>$\uparrow -16.59$    | $^{-}_{\uparrow -6.51}$                 | -                                       | $\downarrow -100.00$<br>$\uparrow +328.78$   | $\downarrow -13.84$<br>$\uparrow +10.58$ | $\uparrow -34.77$<br>$\uparrow -24.89$ |                                        |
| Matrix meth (fake rate)             | ↓+7.97<br>-                                | ↓+11.07<br>-                             | ↓+18.24<br>-                               | $\downarrow -1.50$<br>-                 | <br>↑-29.80                             | ↓-100.00                                     | $\downarrow -6.17$<br>-                  | $\downarrow +22.57$<br>-               | $\downarrow -0.36$<br>-                |
| Matrix meth. (real rate)            | -                                          | -                                        | -                                          | -                                       | $\downarrow +29.74$<br>$\uparrow +0.12$ |                                              | -                                        |                                        | -                                      |
| IFS (Etc)                           | <br>↑+7.92                                 | <br>↑-10.48                              | <br>↑0                                     | <br>↑0                                  | ↓-0.13                                  | <br>↑0                                       | <br>↑0                                   | <br>↑0                                 |                                        |
| JES (Eta)                           | $\downarrow +10.94$<br>$\uparrow +64.90$   | $\downarrow +10.35$<br>$\uparrow +30.19$ | $\downarrow -10.95$<br>$\uparrow +8.27$    | ↓0<br>↑0                                |                                         | $\downarrow +1576.21$<br>$\uparrow +1897.75$ | ↓0<br>↑0                                 | $\downarrow 0$<br>$\uparrow +16.47$    | $\downarrow -1.12$<br>$\uparrow -1.01$ |
| Jets Energy Resolution              |                                            | _<br>↑-16.56                             |                                            |                                         |                                         | -<br>↑+1576.21                               | <br>                                     | _<br>↑+16.47                           | <br>↑_3.89                             |
| JES (In-situ analyses - N.P.1)      | $\downarrow -16.47$<br>$\uparrow +7.33$    | $\downarrow -13.42$<br>$\uparrow +6.50$  | $\downarrow +10.87$<br>$\uparrow +6.70$    | ↓0<br>↑0                                | -                                       | $\downarrow +159.50$<br>$\uparrow +1576.21$  | <u>↓0</u><br>↑0                          | <u>↓0</u><br><u>↑0</u>                 | +4.60                                  |
| JES (In-situ analyses - N.P.2)      | $\downarrow +3.81$                         | ↓+3.50<br>↓+3.50                         | $\downarrow +6.21$                         |                                         | _                                       | ↓0<br>↓0                                     |                                          |                                        | ↓+3.35                                 |
| JES (In-situ analyses - N.P.3)      | $\downarrow^{+1.14}_{+3.12}$               | $\downarrow^{+2.84}_{-4.61}$             | 1+0.70<br>40                               | 10                                      | _                                       | $\downarrow^{+1370.21}$                      | 10                                       | 10                                     | $\downarrow^{-1.88}_{\pm 0.33}$        |

Таблица К.28. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR2 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | $\rightarrow e\nu$                      | $\gamma* \rightarrow ee$                   |                                            | ıgle top                               | ke                                     | nosod                                         | ↓<br>†ر                                    | $\gamma * \rightarrow \tau \tau$          | 0200                                   |
|-------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|
|                                     | М                                       | Z                                          | tt                                         | Sii                                    | Fa                                     | Di                                            | М                                          | Z                                         | EI                                     |
| Default Electron Identification Eff | $\uparrow +1.21 \\ \downarrow -1.21$    | ↑+1.31<br>↓-1.31                           | $\uparrow +1.08 \\ \downarrow -1.08$       | $\uparrow +2.00 \\ \downarrow -2.00$   | -                                      | $\uparrow +2.11 \\ \downarrow -2.11$          | $\uparrow +2.47 \\ \downarrow -2.47$       | $\uparrow +1.66 \\ \downarrow -1.66$      | $\uparrow +1.47 \\ \downarrow -1.47$   |
| Default Electron Isolation Eff      | $\uparrow +0.68 \\ \downarrow -0.68$    | $\uparrow +0.86 \\ \downarrow -0.86$       | $\uparrow +0.78 \\ \downarrow -0.78$       | $\uparrow +1.38 \\ \downarrow -1.38$   | _                                      | $\uparrow +14.45 \\ \downarrow -14.45$        | $\uparrow +5.00 \\ \downarrow -5.00$       | $\uparrow +1.80 \\ \downarrow -1.80$      | $\uparrow +4.08 \\ \downarrow -4.08$   |
| Default Electron Reconstruction Eff | $\uparrow +0.20 \\ \downarrow -0.20$    | ↑+0.23<br>↓-0.23                           | $\uparrow +0.21 \\ \downarrow -0.21$       | $\uparrow +0.20 \\ \downarrow -0.20$   |                                        | $\uparrow +0.07 \\ \downarrow -0.07$          | $\uparrow +0.26 \\ \downarrow -0.26$       | $\uparrow +0.24 \\ \downarrow -0.24$      | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | ↑+0.56<br>↓-0.39                        | $\uparrow +6.62$<br>$\downarrow -3.34$     | ↑+6.94<br>↓0                               | ↑0<br>⊥0                               | _                                      | $\uparrow 0$<br>$\downarrow +448.63$          | ↑0<br>⊥0                                   | ↑0<br>⊥0                                  | $\uparrow +1.95 \\ \downarrow -1.78$   |
| Electrons Resolution                | ↑+0.33<br>↓+1.38                        | $\uparrow +0.19$<br>$\downarrow -0.97$     | ↑0<br>↓+2.84                               | ↑0<br>.1.0                             | _                                      | $\uparrow +448.63$                            | ↑0<br>1.0                                  | ↑0<br>.1.0                                | $\uparrow -0.04$<br>+0.44              |
| Default Electron Trigger Eff        | $\uparrow +0.21$<br>$\downarrow -0.21$  | $\uparrow +0.24$<br>$\downarrow -0.24$     | ↑+0.18<br>↓-0.18                           | $\uparrow +0.22$<br>$\downarrow -0.22$ | _                                      | ↑+0.07<br>↓-0.07                              | $\uparrow +0.25$<br>$\downarrow -0.25$     | $\uparrow +0.17$<br>$\downarrow -0.17$    | $\uparrow +0.19$<br>$\downarrow -0.19$ |
| Etmiss RES Parallel                 | $\uparrow -0.52$                        | $\uparrow -14.96$                          | $\uparrow -3.97$<br>$\downarrow -3.97$     | ↑0<br>↓0                               | -                                      | $\uparrow +448.63$<br>$\downarrow +448.63$    | ↑0<br>.1.0                                 | ↑0<br>1.0                                 | ↑+1.15<br>↓+1.15                       |
| Etmiss RES Perpendicular            | ↑-0.51<br>.L-0.51                       | $\uparrow -6.01$                           | ↑0<br>.1.0                                 | ↑0<br>0                                | -                                      | ↑0<br>.1.0                                    | ↑0<br>.1.0                                 | ↑0<br>.1.0                                | $\uparrow +0.43$<br>$\downarrow +0.43$ |
| Etmiss Scale                        | ↑-0.93<br>↓+1.49                        | $\uparrow -10.29$<br>$\downarrow +7.43$    | ↑0<br>↓+2.84                               | ↑0<br>⊥0                               | _                                      | ↑0<br>↓0                                      | ↑0<br>⊥0                                   | ↑0<br>⊥0                                  | $\uparrow +0.56 \\ \downarrow -0.13$   |
| Fat jet D2 Baseline                 | $\uparrow -5.44$<br>$\downarrow +8.58$  | $\uparrow -2.21$<br>+2.70                  | ↑0<br>.1.0                                 | ↑0<br>.1.0                             | _                                      | ↑0<br>.1.0                                    | ↑0<br>.1.0                                 | ↑0<br>.1.0                                | $\uparrow -4.40$<br>$\downarrow +4.09$ |
| Fat jet D2 Modelling                | $\uparrow -6.27$<br>+3.94               | $\uparrow -3.39$<br>+5.64                  | ↑-3.96                                     | ↑0<br>.1.0                             | _                                      | ↑0<br>.1.0                                    | ↑0<br>1.0                                  | <u>↑0</u>                                 | $\uparrow -5.95$<br>$\downarrow +5.60$ |
| Fat jet D2 TotalStat                | ↑-3.53                                  | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow 0$<br>$\downarrow \pm 0.38$  |
| Fat jet D2 Tracking                 | ↑-3.53<br>↓+1.94                        | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -0.71$<br>$\downarrow +0.39$ |
| Fat jet Mass Baseline               | ↑+3.84<br>↓±19.74                       | ↑+9.92                                     | $\uparrow -7.61$                           | ↑-8.30                                 | _                                      | $\uparrow +481.56$<br>$\downarrow \pm 452.83$ | ↑0<br>↓0                                   |                                           | $\uparrow -0.85$                       |
| Fat jet Mass Modelling              | $\uparrow +6.44$<br>$\downarrow +26.94$ | $\uparrow -18.60$                          | $\uparrow +4.08$<br>$\downarrow \pm 12.19$ | ↑0<br>↓0                               | -                                      | $\uparrow +481.56$                            | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -0.92$                       |
| Fat jet Mass TotalStat              | ↑+0.11                                  | $\uparrow -1.14$                           | ↑0<br>↓0                                   | ↑0<br>10                               | -                                      | ↑0<br>↓0                                      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -0.19$<br>$\downarrow +0.15$ |
| Fat jet Mass Tracking               | ↑+6.90<br>↓-2.36                        | $\uparrow -10.87$<br>$\downarrow \pm 0.40$ | ↑+4.08<br>↓+8.58                           | ↑0<br>↓0                               | _                                      | 10<br>10                                      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -0.19$<br>$\downarrow -0.03$ |
| Fat jet pT Baseline                 | ↑+33.96<br>↓-19.01                      | $\uparrow +18.31$<br>$\downarrow -26.82$   | $\uparrow +16.44$<br>$\downarrow -14.56$   | ↑+11.28<br>↓0                          |                                        | ↑0<br>↓-100.00                                | ↑0<br>.1.0                                 | ↑0<br>.1.0                                | $\uparrow +2.47$<br>$\downarrow -3.26$ |
| Fat jet pT Modelling                | $\uparrow +6.72$<br>$\downarrow -3.53$  | ↑0<br>↓-16.41                              | ↑+4.79<br>↓0                               | ↑0<br>.1.0                             |                                        | ↑0<br>↓-100.00                                | ↑0<br>.1.0                                 | ↑0<br>.1.0                                | $\uparrow +0.85$<br>$\downarrow -1.78$ |
| Fat jet pT TotalStat                | ↑+3.57<br>⊥0                            | ↑0<br>↓0                                   | ↑0<br>⊥0                                   | ↑0<br>⊥0                               |                                        | ↑0<br>↓0                                      | ↑0<br>⊥0                                   | ↑0<br>↓0                                  | ↑+0.19<br>↓-0.14                       |
| Fat jet pT Tracking                 | ↑+0.77<br>↓-4.86                        | ↑+1.03<br>↓-1.49                           | ↑+4.79<br>↓0                               | ↑0<br>⊥0                               |                                        | ↑0<br>⊥0                                      | ↑0<br>⊥0                                   | ↑0<br>↓0                                  | $\uparrow +1.18 \\ \downarrow -2.09$   |
| Muons ID                            | ↑0<br>.1.0                              | <u>↑0</u><br>.1.0                          | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>.1.0                                    | ↑0<br>1.0                                  | <u>↑0</u>                                 | <u>↑0</u>                              |
| Muons MS                            | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>.1.0                                    | ↑0<br>1.0                                  | <u>↑0</u>                                 | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>.1.0                                    | ↑0<br>1.0                                  | <u>↑0</u>                                 | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                                | ↑0<br>↓0                                   | ↑0<br>↓0                                   | ↑0<br>↓0                               | _                                      | ↑0<br>.1.0                                    | ↑0<br>1.0                                  | <u>↑0</u>                                 | ↑0<br>↓0                               |
| Modelling                           | ↑+5.68<br>↓-3.31                        | $\uparrow +45.82$<br>$\downarrow -28.25$   | $\uparrow +7.79$                           |                                        | _                                      | $\uparrow +54.11$<br>$\downarrow -100.00$     | $\uparrow + 16.09$<br>$\downarrow - 15.79$ | $\uparrow + 56.58$<br>$\downarrow -33.62$ | _                                      |
| Default PRW                         | $\uparrow -0.43$<br>$\downarrow -7.65$  | $\uparrow -20.01$<br>$\downarrow +10.68$   | $\uparrow -13.10$<br>$\downarrow +13.51$   | ↑+15.79<br>↓-22.91                     | _                                      | ↑+89.25<br>↓-17.70                            | $\uparrow +10.58$<br>$\downarrow -6.17$    | $\uparrow -23.41$<br>$\downarrow +23.20$  | ↑+0.08<br>↓-0.26                       |
| Matrix meth. (fake rate)            | _                                       | _                                          | _                                          | _                                      | $\uparrow -11.04 \\ \downarrow +11.09$ | _                                             | _                                          | _                                         | _                                      |
| Matrix meth. (real rate)            | -                                       | -                                          | -                                          | -                                      | $\uparrow +1.97 \\ \downarrow -2.05$   |                                               | -                                          | =                                         | =                                      |
| JES (Eta)                           | $\uparrow +1.10 \\ \downarrow +3.17$    | $\uparrow -7.66 \\ \downarrow +6.24$       | ↑0<br>↓0                                   | ↑0<br>↓0                               |                                        | $\uparrow 0 \\ \downarrow +760.78$            | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow +0.52 \\ \downarrow +0.15$   |
| Jets Energy Resolution              | ^++24.30<br>-                           | ↑+44.46<br>-                               | ^++29.56<br>-                              | ^++11.47<br>-                          |                                        | ↑0<br>—                                       | ↑0<br>—                                    | ^-10.95                                   |                                        |
| JES (In-situ analyses - N.P.1)      | $\uparrow +4.89 \\ \downarrow +3.30$    | $\uparrow +16.93 \\ \downarrow +1.72$      | $\uparrow -3.97 \\ \downarrow +10.49$      | $\uparrow +11.47$<br>$\downarrow 0$    | -                                      | $\uparrow +448.63 \\ \downarrow +45.40$       | ↑0<br>↓0                                   | $\uparrow -10.95 \\ \downarrow -10.95$    | $\uparrow -1.62 \\ \downarrow +2.43$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.95 \\ \downarrow +1.48$    | $\uparrow +1.07 \\ \downarrow +4.95$       | $\uparrow 0 \\ \downarrow +3.79$           | ↑0<br>↓0                               |                                        | $\uparrow +448.63 \\ \downarrow 0$            | $\uparrow 0$<br>$\downarrow 0$             | $\uparrow 0$<br>$\downarrow 0$            | $\uparrow -1.79 \\ \downarrow +2.27$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +0.90 \\ \downarrow +1.48$    | $\uparrow +5.13 \\ \downarrow -1.87$       | $\uparrow 0$<br>$\downarrow +2.84$         | ↑0<br>↓0                               | _                                      | $\uparrow +448.63 \\ \downarrow +312.15$      | ↑0<br>↓0                                   | ↑0<br>↓0                                  | $\uparrow -0.20 \\ \downarrow +1.17$   |

Таблица К.29. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR3 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     |                                        | 0)                                       |                                        |                                        |                                        | 1                                        | 1                                          | L .                                      | 1                                      |
|-------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------|
|                                     |                                        | 66                                       |                                        | do                                     |                                        |                                          |                                            | Ŧ                                        |                                        |
|                                     | er                                     | ↑                                        |                                        | , t                                    |                                        | uo                                       | 11                                         | ↑                                        | 000                                    |
|                                     | 1                                      | *                                        |                                        | l ala                                  | ę                                      | soc                                      | 1                                          | *                                        | 8                                      |
|                                     | A                                      | N                                        | tt                                     | Sin                                    | Fal                                    | Dit                                      | А                                          | Z                                        | EL                                     |
| Default Electron Identification Eff | ↑+1.28<br>↓-1.28                       | ↑+1.22<br>↓-1.22                         | ↑+1.13<br>↓-1.13                       | ↑+1.78<br>↓-1.78                       | _                                      | $\uparrow +1.45 \\ \downarrow -1.45$     | $\uparrow +2.47 \\ \downarrow -2.47$       | $\uparrow +1.56 \\ \downarrow -1.56$     | ↑+1.51<br>↓-1.51                       |
| Default Electron Isolation Eff      | $\uparrow +0.74$<br>$\downarrow -0.74$ | $\uparrow +0.72$<br>$\downarrow -0.72$   | ↑+0.83<br>↓-0.83                       | ↑+1.54<br>↓-1.54                       | _                                      | ↑+3.59<br>↓-3.59                         | ↑+5.00<br>↓-5.00                           | ↑+1.30<br>↓-1.30                         | $\uparrow +4.03$                       |
| Default Electron Reconstruction Eff | $\uparrow +0.21$<br>$\downarrow -0.21$ | $\uparrow +0.22 \\ \downarrow -0.22$     | $\uparrow +0.21$<br>$\downarrow -0.21$ | ↑+0.24<br>↓-0.24                       | _                                      | ↑+0.14<br>↓-0.14                         | ↑+0.26<br>↓-0.26                           | ↑+0.25<br>↓-0.25                         | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | ↑+1.08<br>↓+3.94                       | $\uparrow +3.43 \\ \downarrow -2.70$     | ↑+5.08<br>⊥0                           | ↑0<br>⊥0                               | _                                      | $\uparrow +15.63$<br>$\downarrow +70.11$ | ↑0<br>↓0                                   | ↑0<br>⊥0                                 | $\uparrow +1.94 \\ \downarrow -1.36$   |
| Electrons Resolution                | ↑+0.26<br>↓+0.69                       | $\uparrow +0.18$<br>$\downarrow -0.92$   | ↑0<br>↓+2.08                           | ↑-8.55<br>↓0                           | _                                      | ↑+85.74<br>↓0                            | ↑0<br>↓0                                   | ↑0<br>⊥0                                 | $\uparrow +0.11 \\ \downarrow +0.44$   |
| Default Electron Trigger Eff        | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.22 \\ \downarrow -0.22$     | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.22 \\ \downarrow -0.22$   | _                                      | $\uparrow +0.10 \\ \downarrow -0.10$     | $\uparrow +0.25 \\ \downarrow -0.25$       | $\uparrow +0.17 \\ \downarrow -0.17$     | $\uparrow +0.18 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow -1.35 \\ \downarrow -1.35$   | ↑-9.63<br>↓-9.63                         | $\uparrow -2.91 \\ \downarrow -2.91$   | ↑0<br>↓0                               | -                                      | $\uparrow + 85.74 \\ \downarrow + 85.74$ | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.87 \\ \downarrow +0.87$   |
| Etmiss RES Perpendicular            | $\uparrow -1.55 \\ \downarrow -1.55$   | $\uparrow -7.12 \\ \downarrow -7.12$     | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | $\uparrow +68.68 \\ \downarrow +68.68$   | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.21 \\ \downarrow +0.21$   |
| Etmiss Scale                        | $\uparrow -0.52 \\ \downarrow +6.40$   | $\uparrow -10.41 \\ \downarrow +9.06$    | $\uparrow 0$<br>$\downarrow +2.08$     | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.59 \\ \downarrow -0.17$   |
| Fat jet D2 Baseline                 | $\uparrow -6.22$<br>$\downarrow +6.25$ | $\uparrow -1.93$<br>$\downarrow +2.30$   | ↑0<br>⊥0                               | ↑0<br>⊥0                               | _                                      | ↑0<br>⊥0                                 | $\uparrow 0$<br>$\bot + 4971.83$           | ↑0<br>⊥0                                 | $\uparrow -2.40 \\ \downarrow +3.03$   |
| Fat jet D2 Modelling                | $\uparrow -6.66$<br>$\downarrow +3.44$ | $\uparrow -4.41$<br>$\downarrow +4.25$   | ↑-2.90<br>↓0                           | ↑0<br>↓0                               | _                                      | ↑0<br>⊥0                                 | $\uparrow 0$<br>$\downarrow +4971.83$      | $\uparrow 0$<br>$\downarrow +7.41$       | $\uparrow -3.83$<br>$\downarrow +4.64$ |
| Fat jet D2 TotalStat                | $\uparrow -2.19 \\ \downarrow +0.07$   | ↑0<br>↓0                                 |                                        | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                 | ↑0<br>↓+4971.83                            | ↑0<br>↓0                                 | $\uparrow -0.27 \\ \downarrow +0.20$   |
| Fat jet D2 Tracking                 | $\uparrow -2.25 \\ \downarrow +1.28$   | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                 | ↑0<br>↓+4971.83                            | ↑0<br>↓0                                 | $\uparrow -0.38 \\ \downarrow +0.40$   |
| Fat jet Mass Baseline               | $\uparrow -2.00 \\ \downarrow +13.97$  | ↑+9.28<br>↓+19.90                        | $\uparrow -5.58 \\ \downarrow +6.37$   | $\uparrow -6.21$<br>$\downarrow 0$     | _                                      | $\uparrow +75.26 \\ \downarrow +70.77$   |                                            | ↑0<br>↓0                                 | $\uparrow -0.71 \\ \downarrow -1.06$   |
| Fat jet Mass Modelling              | $\uparrow +0.02 \\ \downarrow +17.81$  | $\uparrow -10.97$<br>$\downarrow +12.20$ | $\uparrow +6.54 \\ \downarrow +8.93$   | ↑0<br>⊥0                               | _                                      | ↑+75.26<br>↓0                            | ↑0<br>↓0                                   | ↑0<br>⊥0                                 | $\uparrow +0.18$<br>$\downarrow -0.39$ |
| Fat jet Mass TotalStat              | ↑+0.07<br>↓0                           | ↑-0.86<br>↓0                             | ↑0<br>↓0                               | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow -0.16 \\ \downarrow -0.23$   |
| Fat jet Mass Tracking               | $\uparrow +2.73 \\ \downarrow +0.95$   | $\uparrow -7.36 \\ \downarrow +2.55$     | $\uparrow +2.99 \\ \downarrow +6.29$   | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.01 \\ \downarrow -0.70$   |
| Fat jet pT Baseline                 | $\uparrow +21.65 \\ \downarrow -14.83$ | $\uparrow +17.95 \\ \downarrow -20.54$   | $\uparrow +15.88 \\ \downarrow -19.13$ | ↑+8.44<br>↓0                           | -                                      | $\uparrow 0$<br>$\downarrow -64.83$      | ↑+4971.83<br>↓0                            | ↑0<br>↓0                                 | $\uparrow +2.33 \\ \downarrow -1.77$   |
| Fat jet pT Modelling                | $\uparrow +4.81 \\ \downarrow -4.30$   | ↑0<br>↓-13.25                            | $\uparrow +3.51$<br>$\downarrow 0$     | ↑0<br>↓0                               | -                                      | $\uparrow 0$<br>$\downarrow -64.83$      | ↑+4971.83<br>↓0                            | ↑0<br>↓0                                 | ↑+0.92<br>↓-0.83                       |
| Fat jet pT TotalStat                | ↑+2.21<br>↓0                           | ↑0<br>↓-0.87                             | ↑0<br>↓0                               | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 |                                            | ↑0<br>↓0                                 | $\uparrow +0.13 \\ \downarrow -0.06$   |
| Fat jet pT Tracking                 | $\uparrow +1.12 \\ \downarrow -5.28$   | $\uparrow +0.78 \\ \downarrow -1.99$     | $\uparrow +3.51$<br>$\downarrow 0$     | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 | ↑+4971.83<br>↓0                            | ↑0<br>↓0                                 | $\uparrow +1.01 \\ \downarrow -0.82$   |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                 |                                            | ↑0<br>↓0                                 | <br>↓0                                 |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 |                                            | ↑0<br>↓0                                 | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               |                                        | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                                 | ↑0<br>↓0                               |
| Modelling                           | $\uparrow +6.55 \\ \downarrow -3.75$   | $\uparrow +47.00 \\ \downarrow -28.69$   | $\uparrow +8.97 \\ \downarrow -5.16$   | -                                      | _                                      | $\uparrow + 11.35 \\ \downarrow - 12.76$ | $\uparrow + 16.09$<br>$\downarrow - 15.79$ | $\uparrow + 54.94 \\ \downarrow - 32.38$ | -                                      |
| Default PRW                         | $\uparrow -3.69 \\ \downarrow -3.20$   | $\uparrow -7.08 \\ \downarrow +4.32$     | $\uparrow -10.73 \\ \downarrow +7.90$  | $\uparrow +10.67 \\ \downarrow -17.00$ | -                                      | $\uparrow +20.49 \\ \downarrow -6.34$    | $\uparrow +10.58 \\ \downarrow -6.17$      | $\uparrow -18.36 \\ \downarrow +20.67$   | $\uparrow +0.43 \\ \downarrow +0.94$   |
| Matrix meth. (fake rate)            | _                                      |                                          |                                        |                                        | $\uparrow -27.43 \\ \downarrow +27.46$ | _                                        | _                                          | _                                        | _                                      |
| Matrix meth. (real rate)            | _                                      | _                                        | _                                      | _                                      | $\uparrow +1.61 \\ \downarrow -1.67$   | _                                        | _                                          | _                                        | _                                      |
| JES (Eta)                           | $\uparrow +3.44 \\ \downarrow +4.55$   | $\uparrow -4.17 \\ \downarrow +3.11$     | $\uparrow +2.73 \downarrow 0$          | $\uparrow +13.28$<br>$\downarrow 0$    | _                                      | $\uparrow +15.63 \\ \downarrow +118.89$  | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow +0.16 \\ \downarrow +0.11$   |
| Jets Energy Resolution              |                                        |                                          | ↑+29.57<br>-                           | ↑+0.03<br>-                            | _                                      | ↑+48.78<br>-                             |                                            | ↑-7.68<br>-                              | ↑+0.78<br>-                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +8.62 \\ \downarrow +3.51$   | $\uparrow +15.44 \\ \downarrow +11.65$   | $\uparrow -5.88 \\ \downarrow +7.69$   | $\uparrow +8.57$<br>$\downarrow 0$     | _                                      | $\uparrow +70.11 \\ \downarrow +71.50$   | ↑0<br>↓0                                   | $\uparrow -7.68 \\ \downarrow -7.68$     | $\uparrow -0.85 \\ \downarrow +2.83$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +10.53 \\ \downarrow +2.78$  | $\uparrow +0.62 \\ \downarrow +2.54$     | $\uparrow 0$<br>$\downarrow +5.51$     | ↑0<br>↓0                               | -                                      | ↑+70.11<br>↓0                            | ↑0<br>↓0                                   | ↑0<br>↓0                                 | $\uparrow -1.29 \\ \downarrow +1.56$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +9.35 \\ \downarrow +4.19$   | $\uparrow +3.42 \\ \downarrow -2.05$     | $\uparrow -2.97 \\ \downarrow +4.81$   | $\uparrow +13.28 \\ \downarrow -8.55$  |                                        | $\uparrow +70.11 \\ \downarrow +64.41$   | $\uparrow 0$<br>$\downarrow 0$             | ↑0<br>↓0                                 | $\uparrow -0.19 \\ \downarrow +0.76$   |

Таблица К.30. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR4 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | ev                                     | ee<br>↑                                  |                                         | top                                    |                                        | uo                                     | 77                                     | +++                                    | 00                                     |
|-------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                     | 1                                      | *                                        |                                         | gle                                    | e                                      | ose                                    | ↑ (                                    | *                                      | 04                                     |
|                                     | A                                      | N                                        | tt                                      | Sin                                    | Fal                                    | Dil                                    | R                                      | N                                      | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.36 \\ \downarrow -1.36$   | $\uparrow +1.22 \\ \downarrow -1.22$     | $\uparrow +1.12 \\ \downarrow -1.12$    | ↑+1.01<br>↓-1.01                       |                                        | ↑+1.05<br>↓-1.05                       | $\uparrow +0.53 \\ \downarrow -0.53$   | $\uparrow +1.40 \\ \downarrow -1.40$   | $\uparrow +1.53 \\ \downarrow -1.53$   |
| Default Electron Isolation Eff      | $\uparrow +0.74$<br>$\downarrow -0.74$ | ↑+0.33<br>↓-0.33                         | $\uparrow +0.71$<br>$\downarrow -0.71$  | $\uparrow +0.85$<br>$\downarrow -0.85$ | _                                      | $\uparrow +0.63$<br>$\downarrow -0.63$ | $\uparrow +0.07$<br>$\downarrow -0.07$ | $\uparrow +0.20$<br>$\downarrow -0.20$ | $\uparrow +3.84$<br>$\downarrow -3.84$ |
| Default Electron Reconstruction Eff | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.28 \\ \downarrow -0.28$     | $\uparrow +0.22 \\ \downarrow -0.22$    | $\uparrow +0.20 \\ \downarrow -0.20$   | _                                      | $\uparrow +0.26 \\ \downarrow -0.26$   | $\uparrow +0.11 \\ \downarrow -0.11$   | $\uparrow +0.27 \\ \downarrow -0.27$   | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | $\uparrow -1.06 \\ \downarrow -2.74$   | ↑+0.04<br>↓+0.01                         | $\uparrow +9.51 \\ \downarrow -9.96$    | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +1.66 \\ \downarrow -1.34$   |
| Electrons Resolution                | $\uparrow -3.21 \\ \downarrow -0.77$   | $\uparrow +1.57$<br>$\downarrow 0$       | $\uparrow 0$<br>$\downarrow -0.38$      | $\uparrow -7.40$<br>$\downarrow 0$     | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.10 \\ \downarrow +0.28$   |
| Default Electron Trigger Eff        | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.26 \\ \downarrow -0.26$     | $\uparrow +0.20 \\ \downarrow -0.20$    | $\uparrow +0.17 \\ \downarrow -0.17$   | -                                      | $\uparrow +0.20 \\ \downarrow -0.20$   | $\uparrow +0.09 \\ \downarrow -0.09$   | $\uparrow +0.26 \\ \downarrow -0.26$   | $\uparrow +0.19 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow -2.30 \\ \downarrow -2.30$   | $\uparrow +1.91 \\ \downarrow +1.91$     | $\uparrow -10.45 \\ \downarrow -10.45$  | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.01 \\ \downarrow +0.01$   |
| Etmiss RES Perpendicular            | $\uparrow -2.39 \\ \downarrow -2.39$   | $\uparrow -2.27 \\ \downarrow -2.27$     | $\uparrow -3.54 \\ \downarrow -3.54$    | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +1.43 \\ \downarrow +1.43$   |
| Etmiss Scale                        | $\uparrow -5.56 \\ \downarrow +1.46$   | $\uparrow -1.75 \\ \downarrow +6.53$     | $\uparrow -9.66 \\ \downarrow -0.45$    | ↑0<br>↓0                               | -                                      | $\uparrow 0 \\ \downarrow +3.87$       | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.45 \\ \downarrow -0.42$   |
| Fat jet D2 Baseline                 | $\uparrow -4.85$<br>$\downarrow +4.07$ | $\uparrow -20.75$<br>$\downarrow +3.31$  | ↑0<br>.1.0                              | $\uparrow -6.53$                       | _                                      | ↑0<br>.1.0                             | ↑-100.00                               | ↑0<br>.1.0                             | $\uparrow -2.92$<br>+3.49              |
| Fat jet D2 Modelling                | $\uparrow -4.55$<br>$\downarrow +1.87$ | $\uparrow -4.11$<br>$\downarrow +3.68$   | ↑-5.07<br>⊥0                            | ↑-6.53<br>↓0                           | _                                      | ↑0<br>↓0                               | ↑-100.00<br>↓0                         | $\uparrow 0$<br>$\downarrow +12.35$    | $\uparrow -3.94 \\ \downarrow +4.61$   |
| Fat jet D2 TotalStat                | $\uparrow 0$<br>$\downarrow +0.12$     | ↑-1.13<br>↓0                             | ↑0<br>⊥0                                | ↑0<br>⊥0                               | _                                      | ↑0<br>↓0                               | ↑0<br>⊥0                               | ↑0<br>↓0                               | $\uparrow -0.23$<br>$\downarrow +0.47$ |
| Fat jet D2 Tracking                 | ↑0<br>↓+0.18                           | ↑-1.13<br>↓0                             | ↑0<br>↓0                                | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow -0.59 \\ \downarrow +0.69$   |
| Fat jet Mass Baseline               | $\uparrow -6.07$<br>$\downarrow -4.01$ | ↑+3.89<br>↓+4.19                         | $\uparrow -10.05$<br>$\downarrow +7.00$ | ↑0<br>⊥0                               | _                                      | ↑+28.01<br>↓0                          | $\uparrow 0$<br>$\bot -100.00$         | ↑0<br>↓0                               | $\uparrow -0.51$<br>$\downarrow +0.74$ |
| Fat jet Mass Modelling              | $\uparrow -1.41 \\ \downarrow -0.05$   | $\uparrow +5.87 \\ \downarrow +3.14$     | $\uparrow 0 \\ \downarrow +7.00$        | ↑0<br>↓0                               | _                                      | ↑+28.01<br>↓0                          | ↑0<br>↓-100.00                         | ↑0<br>↓0                               | $\uparrow -0.09 \\ \downarrow +0.48$   |
| Fat jet Mass TotalStat              | ↑+0.06<br>⊥0                           | ↑0<br>⊥0                                 | ↑0<br>⊥0                                | ↑0<br>⊥0                               | _                                      | <br>↓0                                 | <br>↓0                                 | ↑0<br>↓0                               | $\uparrow +0.13 \\ \downarrow +0.32$   |
| Fat jet Mass Tracking               | $\uparrow +1.80 \\ \downarrow +1.62$   | $\uparrow -0.00 \\ \downarrow +2.11$     | $\uparrow 0$<br>$\downarrow +2.38$      | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.35 \\ \downarrow +0.71$   |
| Fat jet pT Baseline                 | $\uparrow +5.21 \\ \downarrow -17.15$  | $\uparrow +10.42$<br>$\downarrow -37.26$ | $\uparrow +24.70 \\ \downarrow -10.61$  | $\uparrow 0$<br>$\downarrow -6.53$     | -                                      | ↑+2.16<br>↓0                           | $\uparrow 0$<br>$\downarrow -100.00$   | ↑0<br>↓0                               | $\uparrow +2.90 \\ \downarrow -1.79$   |
| Fat jet pT Modelling                | $\uparrow +2.78 \\ \downarrow -3.48$   | $\uparrow +4.22 \\ \downarrow -17.74$    | ↑+4.86<br>↓0                            | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +1.11 \\ \downarrow -0.51$   |
| Fat jet pT TotalStat                | ↑+0.06<br>↓0                           | $\uparrow 0$<br>$\downarrow -2.22$       | $\uparrow +4.86 \\ \downarrow 0$        | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow +0.11 \\ \downarrow -0.05$   |
| Fat jet pT Tracking                 | $\uparrow -0.19$<br>$\downarrow -4.54$ | $\uparrow +6.67 \\ \downarrow -3.63$     | $\uparrow +4.86 \\ \downarrow 0$        | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -100.00$   | ↑0<br>↓0                               | $\uparrow +1.38 \\ \downarrow -1.04$   |
| Muons ID                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                | ↑0<br>↓0                               | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Modelling                           | $\uparrow +2.69 \\ \downarrow -2.28$   | $\uparrow +41.74 \\ \downarrow -26.05$   | $\uparrow +13.18 \\ \downarrow -8.43$   |                                        |                                        | ↑+13.39<br>↓-10.60                     | ↑0<br>↓0                               | $\uparrow +57.59 \\ \downarrow -33.11$ | _                                      |
| Default PRW                         | $\uparrow -5.76 \\ \downarrow +0.39$   | $\uparrow -4.16 \\ \downarrow -2.54$     | $\uparrow -8.82 \\ \downarrow +8.16$    | $\uparrow +57.93 \\ \downarrow -32.04$ |                                        | $\uparrow +3.82 \\ \downarrow -14.12$  | $\uparrow -10.97 \\ \downarrow +18.79$ | $\uparrow -13.83 \\ \downarrow +11.03$ | $\uparrow -0.07 \\ \downarrow -0.46$   |
| Matrix meth. (fake rate)            | _                                      | _                                        | _                                       | _                                      | $\uparrow -45.14 \\ \downarrow +45.34$ | _                                      | _                                      | _                                      | _                                      |
| Matrix meth. (real rate)            |                                        | -                                        | -                                       |                                        | $\uparrow +8.08 \\ \downarrow -8.23$   | -                                      |                                        | -                                      |                                        |
| JES (Eta)                           | $\uparrow +2.59 \\ \downarrow -4.20$   | $\uparrow +4.71 \\ \downarrow -1.49$     | $\uparrow +4.77 \\ \downarrow +0.19$    | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑+0.15<br>↓-0.01                       |
| Jets Energy Resolution              | ↑-1.45<br>-                            | ↑+32.15<br>-                             |                                         | ↑-7.40<br>-                            |                                        | ↑-2.26<br>-                            | ↑+228.13<br>-                          | ↑+12.80<br>-                           | ^++1.24<br>                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow +1.01 \\ \downarrow -1.81$   | $\uparrow -17.43 \\ \downarrow -2.35$    | $\uparrow -5.30 \\ \downarrow +4.53$    | ↑0<br>↓0                               |                                        | $\uparrow +3.87 \\ \downarrow -6.70$   | $\uparrow 0 \\ \downarrow +113.34$     | $\uparrow 0$<br>$\downarrow 0$         | $\uparrow -1.28 \\ \downarrow +1.39$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.80 \\ \downarrow -2.55$   | $\uparrow -0.40 \\ \downarrow -1.09$     | $\uparrow -5.23 \\ \downarrow +0.11$    | ↑0<br>↓0                               |                                        | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$         | $\uparrow -1.04 \\ \downarrow +1.35$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow +3.11 \\ \downarrow +0.04$   | $\uparrow +1.52 \\ \downarrow -0.36$     | $\uparrow +0.05$<br>$\downarrow +4.74$  | $\uparrow 0$<br>$\downarrow -7.40$     | _                                      | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow +95.76$    | ↑0<br>↓0                               | $\uparrow +0.15 \\ \downarrow +0.09$   |

Таблица К.31. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR5 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 2                                      | ee<br>↑                                  |                                          | top                                        |                                        | ц                                      | 7                                        | + + +                                      | 00                                     |
|-------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------|----------------------------------------|
|                                     | ↑                                      | *                                        |                                          | ele<br>ele                                 | ê                                      | osoc                                   | Ì ↑                                      | *                                          | 05(                                    |
|                                     | И                                      | Z                                        | tt<br>t                                  | Sin                                        | Fal                                    | Dit                                    | M                                        | 'z                                         | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.31 \\ \downarrow -1.31$   | $\uparrow +1.15 \\ \downarrow -1.15$     | $\uparrow +1.07 \\ \downarrow -1.07$     | $\uparrow +1.00 \\ \downarrow -1.00$       | -                                      | $\uparrow +1.35 \\ \downarrow -1.35$   | $\uparrow +1.35 \\ \downarrow -1.35$     | $\uparrow +1.65 \\ \downarrow -1.65$       | $\uparrow +1.49 \\ \downarrow -1.49$   |
| Default Electron Isolation Eff      | ↑+0.80<br>↓-0.80                       | $\uparrow +0.28 \\ \downarrow -0.28$     | $\uparrow +0.44 \\ \downarrow -0.44$     | $\uparrow +0.72 \\ \downarrow -0.72$       | -                                      | ↑+0.94<br>↓-0.94                       | $\uparrow +0.89 \\ \downarrow -0.89$     | $\uparrow +1.24 \\ \downarrow -1.24$       | $\uparrow +3.59 \\ \downarrow -3.59$   |
| Default Electron Reconstruction Eff | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.29 \\ \downarrow -0.29$     | $\uparrow +0.23 \\ \downarrow -0.23$     | $\uparrow +0.15 \\ \downarrow -0.15$       | -                                      | $\uparrow +0.27 \\ \downarrow -0.27$   | $\uparrow +0.17 \\ \downarrow -0.17$     | $\uparrow +0.22 \\ \downarrow -0.22$       | ↑+0.23<br>↓-0.23                       |
| Electrons Scale                     | $\uparrow +0.12$<br>$\downarrow -2.35$ | $\uparrow +0.34 \\ \downarrow -2.31$     | $\uparrow +4.99$<br>$\downarrow -0.04$   | ↑0<br>↓0                                   | _                                      | 0<br>↓0                                | ^0<br>⊥0                                 | ↑0<br>⊥0                                   | ↑+0.39<br>↓-1.31                       |
| Electrons Resolution                | $\uparrow -0.45 \\ \downarrow -0.65$   | $\uparrow +1.82 \\ \downarrow +0.28$     | $\uparrow 0$<br>$\downarrow +2.47$       | ↑0<br>↓0                                   | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.52 \\ \downarrow -0.03$   |
| Default Electron Trigger Eff        | ↑+0.23<br>↓-0.23                       | $\uparrow +0.28 \\ \downarrow -0.28$     | $\uparrow +0.22 \\ \downarrow -0.22$     | $\uparrow +0.14 \\ \downarrow -0.14$       | -                                      | $\uparrow +0.24 \\ \downarrow -0.24$   | $\uparrow +0.16 \\ \downarrow -0.16$     | $\uparrow +0.24 \\ \downarrow -0.24$       | $\uparrow +0.19 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow +7.49 \\ \downarrow +7.49$   | $\uparrow +3.70 \\ \downarrow +3.70$     | $\uparrow -22.67 \\ \downarrow -22.67$   | ↑0<br>↓0                                   | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.10 \\ \downarrow -0.10$   |
| Etmiss RES Perpendicular            | $\uparrow +8.32 \\ \downarrow +8.32$   | $\uparrow -1.50 \\ \downarrow -1.50$     | $\uparrow -15.13 \\ \downarrow -15.13$   | ↑0<br>↓0                                   | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.41 \\ \downarrow -0.41$   |
| Etmiss Scale                        | $\uparrow +1.94 \\ \downarrow +10.15$  | $\uparrow -1.90 \\ \downarrow +9.88$     | $\uparrow -12.52 \\ \downarrow +2.52$    | ↑0<br>↓0                                   |                                        | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑+0.27<br>↓0                           |
| Fat jet D2 Baseline                 | $\uparrow -6.17 \\ \downarrow +3.97$   | $\uparrow -2.95 \\ \downarrow +4.52$     | $\uparrow -3.65 \\ \downarrow +5.90$     | $\uparrow -6.57 \\ \downarrow 0$           | -                                      | ↑0<br>↓0                               | ↑-21.10<br>↓0                            | ↑0<br>↓0                                   | $\uparrow -2.89 \\ \downarrow +3.38$   |
| Fat jet D2 Modelling                | $\uparrow -7.72 \\ \downarrow +3.58$   | $\uparrow -5.33$<br>$\downarrow +4.95$   | $\uparrow -6.30$<br>$\downarrow +5.90$   | $\uparrow -6.57$<br>$\downarrow 0$         | _                                      | 0↑<br>↓0                               | ↑-21.10<br>⊥0                            | ↑0<br>⊥0                                   | $\uparrow -4.10$<br>$\downarrow +4.88$ |
| Fat jet D2 TotalStat                | ↑0<br>↓+0.05                           | ↑-1.31<br>↓0                             | $\uparrow -3.65$<br>$\downarrow +2.53$   | ↑0<br>↓0                                   | _                                      | 0↑<br>↓0                               | 0<br>↓0                                  | ↑0<br>⊥0                                   | $\uparrow -0.10$<br>$\downarrow +0.39$ |
| Fat jet D2 Tracking                 | ↑0<br>↓+0.10                           | ↑-1.60<br>↓0                             | $\uparrow -3.65$<br>$\downarrow +2.53$   | ↑0<br>⊥0                                   | _                                      | 0↑<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>⊥0                                   | $\uparrow -0.29 \\ \downarrow +0.79$   |
| Fat jet Mass Baseline               | $\uparrow +38.13 \\ \downarrow -0.22$  | $\uparrow +2.90$<br>$\downarrow +11.99$  | $\uparrow -11.41$<br>$\downarrow +11.84$ | $\uparrow +6.51 \\ \downarrow +7.22$       | _                                      | ↑+1.97<br>↓+1.87                       | $\uparrow -27.92$<br>$\downarrow -21.10$ | ↑-57.81<br>↓0                              | ↑-0.63<br>↓-1.90                       |
| Fat jet Mass Modelling              | ↑+1.06<br>↓+3.43                       | $\uparrow +6.50$<br>$\downarrow +1.01$   | $\uparrow -5.17$<br>$\downarrow +9.05$   | ↑0<br>⊥0                                   | _                                      | ↑+1.97<br>↓0                           | $\uparrow -27.92$<br>$\downarrow -21.10$ | ↑-57.81<br>↓0                              | $\uparrow -0.92$<br>$\downarrow -1.29$ |
| Fat jet Mass TotalStat              | ↑+0.05<br>↓0                           | ↑0<br>↓0                                 | ↑0<br>↓0                                 | ↑0<br>↓0                                   | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.03 \\ \downarrow -0.37$   |
| Fat jet Mass Tracking               | ↑+3.00<br>↓+3.38                       | $\uparrow -0.58$<br>$\downarrow +2.14$   | $\uparrow -2.63$<br>$\downarrow +6.63$   | ↑0<br>⊥0                                   | _                                      | 0↑<br>↓0                               | ↑-27.92<br>↓0                            | ↑0<br>⊥0                                   | $\uparrow -0.23$<br>$\downarrow -1.59$ |
| Fat jet pT Baseline                 | $\uparrow +15.72 \\ \downarrow -4.99$  | $\uparrow +13.67$<br>$\downarrow -22.04$ | ↑+13.68<br>↓-9.07                        | $\uparrow +6.45 \\ \downarrow -6.57$       |                                        | ↑+16.27<br>↓0                          | $\uparrow 0$<br>$\downarrow -21.10$      | ↑0<br>⊥0                                   | $\uparrow +2.29 \\ \downarrow -2.16$   |
| Fat jet pT Modelling                | ↑+3.28<br>↓-0.36                       | $\uparrow +4.88$<br>$\downarrow -20.82$  | ↑+5.07<br>↓-3.65                         | ↑0<br>⊥0                                   |                                        | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>⊥0                                   | ↑+1.03<br>↓-0.32                       |
| Fat jet pT TotalStat                | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -2.57$       | +2.54<br>↓0                              | ↑0<br>↓0                                   |                                        | ↑0<br>↓0                               |                                          | ↑0<br>↓0                                   | ↑+0.24<br>↓-0.10                       |
| Fat jet pT Tracking                 | $\uparrow +4.67 \\ \downarrow -0.44$   | $\uparrow +7.71 \\ \downarrow -4.50$     | $\uparrow +5.07 \\ \downarrow -3.65$     | ↑0<br>↓0                                   | -                                      | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow -21.10$      | ↑0<br>↓0                                   | $\uparrow +1.49 \\ \downarrow -0.86$   |
| Muons ID                            | ↑0<br>↓0                               |                                          | ↑0<br>↓0                                 | ↑0<br>↓0                                   | -                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>⊥0                               | ↑0<br>⊥0                                 | <br>↓0                                   | 0<br>_⊥0                                   | _                                      | 0↑<br>10                               | 0<br>↓0                                  | 0<br>_⊥0                                   | ↑0<br>⊥0                               |
| Muons Sagitta RES                   | ↑0<br>⊥0                               | ↑0<br>⊥0                                 | ↑0<br>⊥0                                 | ↑0<br>⊥0                                   |                                        | 0↑<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>⊥0                                   | ↑0<br>⊥0                               |
| Muons Sagitta RHO                   | ↑0<br>⊥0                               | ↑0<br>⊥0                                 | ↑0<br>⊥0                                 | ↑0<br>⊥0                                   |                                        | 0↑<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>⊥0                                   | ↑0<br>⊥0                               |
| Muons Scale                         | ↑0<br>⊥0                               | ↑0<br>⊥0                                 | ↑0<br>⊥0                                 | ↑0<br>⊥0                                   |                                        | 0↑<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>⊥0                                   | ↑0<br>⊥0                               |
| Modelling                           | ↑+6.06<br>↓-4.85                       | $\uparrow +46.03$<br>$\downarrow -28.44$ | $\uparrow +11.13$<br>$\downarrow -6.36$  |                                            | _                                      | $\uparrow +9.13$<br>$\downarrow -7.68$ | $\uparrow +5.63$                         | $\uparrow + 66.17$<br>$\downarrow - 37.91$ |                                        |
| Default PRW                         | ↑+1.18<br>↓+0.14                       | ↑-0.83<br>↓-8.24                         | $\uparrow -8.86$<br>$\downarrow +11.57$  | $\uparrow + 59.44$<br>$\downarrow - 32.55$ |                                        | ↑-1.93<br>↓-7.12                       | $\uparrow -0.95$<br>$\downarrow -1.49$   | ↑-2.95<br>↓-5.53                           | $\uparrow -3.92 \\ \downarrow +2.65$   |
| Matrix meth. (fake rate)            |                                        | -                                        |                                          |                                            | $\uparrow +1.89 \\ \downarrow -0.89$   |                                        |                                          |                                            |                                        |
| Matrix meth. (real rate)            | -                                      | -                                        | -                                        |                                            | $\uparrow +25.52 \\ \downarrow -25.93$ | _                                      |                                          |                                            | _                                      |
| JES (Eta)                           | $\uparrow +2.08 \\ \downarrow -0.38$   | $\uparrow +6.55 \\ \downarrow +0.15$     | $\uparrow +0.15$<br>$\downarrow 0$       | ↑0<br>↓0                                   | _                                      | $\uparrow +2.54$<br>$\downarrow 0$     | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow 0$             | $\uparrow -0.08 \\ \downarrow +0.08$   |
| Jets Energy Resolution              | ^++22.65<br>_                          | ^+35.96<br>-                             | ^++10.63<br>-                            | ↑0<br>_                                    | -                                      | +6.63<br>−                             | ↑0<br>—                                  | ↑0<br>—                                    | ↑-0.09<br>-                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow -7.55 \\ \downarrow +2.39$   | $\uparrow -3.34 \\ \downarrow +3.65$     | $\uparrow -11.66 \\ \downarrow +1.97$    | ↑0<br>↓0                                   |                                        | $\uparrow 0$<br>$\downarrow +2.40$     | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow 0$             | $\uparrow -0.78 \\ \downarrow +0.42$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow +3.65 \\ \downarrow -2.71$   | $\uparrow +1.09 \\ \downarrow +1.22$     | $\uparrow 0$<br>$\downarrow -5.13$       | ↑0<br>↓0                                   | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.39 \\ \downarrow -0.05$   |
| JES (In-situ analyses - N.P.3)      | ↑+1.13<br>↓-0.86                       | ↑+1.93<br>↓+3.92                         | $\uparrow +0.92 \\ \downarrow +1.87$     | ↑0<br>↓0                                   | _                                      | ↑0<br>↓0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                   | $\uparrow -0.31 \\ \downarrow +0.05$   |

Таблица К.32. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR6 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     |                                           | . ee                                     |                                           | do                                     |                                        |                                          |                                          | . 11                                      |                                          |
|-------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
|                                     | + e1                                      | ↑<br>*                                   |                                           | le t                                   |                                        | loso                                     | ÷ +                                      | ↑<br>*                                    | 9600                                     |
|                                     |                                           | 12                                       | 4                                         | ing                                    | ake                                    | Dibc                                     |                                          |                                           | E 0                                      |
|                                     | ↑+1.25                                    | ^++1.13                                  | ÷÷<br>↑+1.14                              | ∽<br>↑+1.23                            | <u>щ</u>                               | →<br>+0.81                               | A +0.97                                  | ↑+1.70                                    | ±<br>↑+1.48                              |
| Default Electron Identification Eff | $\downarrow -1.25$<br>$\uparrow +0.63$    | $\downarrow -1.13$<br>$\uparrow +0.37$   | $\downarrow -1.14$<br>$\uparrow +0.55$    | $\downarrow -1.23$<br>$\uparrow +0.58$ | -                                      | $\downarrow -0.81$<br>$\uparrow +0.55$   | $\downarrow -0.97$<br>$\uparrow +0.79$   | $\downarrow -1.70$<br>$\uparrow +1.51$    | $\downarrow -1.48$<br>$\uparrow +3.54$   |
| Default Electron Isolation Eff      | $\downarrow -0.63$<br>$\uparrow +0.21$    | $\downarrow -0.37$<br>$\uparrow +0.20$   | $\downarrow -0.55$<br>$\uparrow +0.18$    | $\downarrow -0.58$<br>$\uparrow +0.20$ | -                                      | $\downarrow -0.55$<br>$\uparrow +0.33$   | $\downarrow -0.79$<br>$\uparrow +0.20$   | $\downarrow -1.51$<br>$\uparrow +0.21$    | $\downarrow -3.54$<br>$\uparrow +0.22$   |
| Default Electron Reconstruction Eff | $\downarrow -0.21$<br>$\uparrow \pm 2.80$ | $\downarrow -0.20$                       | $\downarrow -0.18$<br>$\uparrow \pm 7.28$ | $\downarrow -0.20$                     | -                                      | $\downarrow -0.33$                       | $\downarrow -0.20$                       | $\downarrow -0.21$<br>$\uparrow \pm 7.98$ | $\downarrow -0.22$                       |
| Electrons Scale                     | $\downarrow -0.37$                        | $\downarrow +0.03$                       | ↓0<br>↓0                                  |                                        | _                                      |                                          |                                          | 10<br>10                                  | $\downarrow -0.58$                       |
| Electrons Resolution                | ↓+0.04                                    | $\downarrow +0.75$                       | $\downarrow +5.72$                        | 10                                     | _                                      |                                          | 10                                       |                                           | $\downarrow +0.05$                       |
| Default Electron Trigger Eff        | 1+0.23<br>1-0.23                          | $\downarrow -0.20$<br>$\downarrow -0.20$ | $\downarrow -0.18$<br>$\downarrow -0.18$  | 1+0.23<br>$\downarrow -0.23$           | _                                      | $\downarrow -0.32$<br>$\downarrow -0.32$ | $\downarrow -0.15$<br>$\downarrow -0.15$ | 1+0.20<br>1-0.20                          | $\downarrow -0.19$<br>$\downarrow -0.19$ |
| Etmiss RES Parallel                 | $\uparrow -1.98 \\ \downarrow -1.98$      | $\uparrow -10.06 \\ \downarrow -10.06$   | ↑0<br>↓0                                  | $\uparrow -3.90 \\ \downarrow -3.90$   | -                                      | $\uparrow +4.85 \\ \downarrow +4.85$     | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow -0.06 \\ \downarrow -0.06$     |
| Etmiss RES Perpendicular            | $\uparrow -0.83 \\ \downarrow -0.83$      | $\uparrow -5.78 \\ \downarrow -5.78$     | ↑0<br>↓0                                  | ↑0<br>↓0                               | _                                      | $\uparrow +1.04 \\ \downarrow +1.04$     | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow -0.15 \\ \downarrow -0.15$     |
| Etmiss Scale                        | $\uparrow -1.58 \\ \downarrow +6.87$      | $\uparrow -8.85 \\ \downarrow +5.72$     | $\uparrow -4.62 \\ \downarrow +7.28$      | $\uparrow 0$<br>$\downarrow 0$         | _                                      | $\uparrow -1.96 \\ \downarrow +9.81$     | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow 0$            | $\uparrow +0.07 \\ \downarrow -0.08$     |
| Fat jet D2 Baseline                 | $\uparrow -5.08 \\ \downarrow +4.14$      | $\uparrow -4.31 \\ \downarrow +10.85$    | $\uparrow 0 \\ \downarrow +10.10$         | ↑-9.09<br>↓0                           |                                        | ↑0<br>↓0                                 | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow -2.95 \\ \downarrow +2.98$     |
| Fat jet D2 Modelling                | $\uparrow -5.59 \\ \downarrow +5.95$      | $\uparrow -7.30 \\ \downarrow +13.00$    | $\uparrow -4.54 \\ \downarrow +10.10$     | ↑-9.09<br>↓0                           | _                                      | ↑0<br>↓0                                 | $\uparrow 0 \\ \downarrow +589.56$       | ↑0<br>↓0                                  | $\uparrow -4.03 \\ \downarrow +4.42$     |
| Fat jet D2 TotalStat                | ↑0<br>↓+1.24                              | ↑0<br>.1.0                               | ↑0<br>↓+4.33                              | ↑0<br>↓0                               | -                                      | ↑0<br>.1.0                               | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow -0.17$<br>$\downarrow +0.38$   |
| Fat jet D2 Tracking                 | $\uparrow -0.04$                          | ↑-0.78                                   | $\uparrow 0$<br>$\downarrow \pm 4.33$     | ↑0<br>↓0                               | _                                      | ↑0<br>↓0                                 | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow -0.31$                         |
| Fat jet Mass Baseline               | ↑-1.81                                    | ↑+4.93                                   | $\uparrow -12.93$                         | ↑0<br>↓0                               | -                                      | ↑+0.45                                   | ↑-35.95                                  | ↑-73.36                                   | $\uparrow -1.13$                         |
| Fat jet Mass Modelling              | $\uparrow -0.24$                          | $\uparrow +6.13$                         | ↑-8.66                                    | ↑0<br>↓0                               | -                                      | ↑-2.55                                   | ↑-35.95                                  | ↑-73.36                                   | $\uparrow -0.97$                         |
| Fat jet Mass TotalStat              | ↑+0.04                                    | ↑0<br>↓0                                 | ↑0<br>↓0                                  | ↑0                                     | _                                      | ↑0<br>10                                 | ↑0<br>10                                 | <u>↓0</u><br>↑0                           | ↑-0.09                                   |
| Fat jet Mass Tracking               | ↑+0.55                                    | ↑+1.25                                   | ↑0<br>1 0 0 0 7                           | <u>↓0</u><br>↑0                        | _                                      | <u>↓0</u><br>↑0                          | ↑-35.95                                  | <u>↓0</u><br>↑0                           | ↑-0.81                                   |
| Fat jet pT Baseline                 | $\uparrow +11.17$                         | $\uparrow + 0.54$<br>$\uparrow + 1.00$   | $\uparrow + 4.33$                         | ↓0<br>↑0                               | -                                      | ↓0<br>↑+3.00                             | <u>↓0</u><br>↑0                          | ↓0<br>↑+24.81                             | $\uparrow +1.49$                         |
| Fat jet pT Modelling                | $\uparrow +2.39$                          | ↓-11.60<br>↑0                            | $\uparrow -4.62$<br>$\uparrow +4.33$      | ↓0<br>↑0                               | -                                      | ↓0<br>↑+3.00                             | ↓0<br>↑0                                 | <u>↓0</u><br>↑0                           | $\uparrow +0.45$                         |
| Fat jet pT TotalStat                | ↓+0.06<br>↑0                              | ↓-5.06<br>↑0                             | $\uparrow 0$                              | ↓0<br>↑0                               | -                                      | <br>↑0                                   | ↓0<br>↑0                                 | ↓0<br>↑0                                  | $\uparrow +0.62$<br>$\uparrow +0.22$     |
| Fat jet pT Tracking                 | $\downarrow 0$<br>$\uparrow +3.80$        | $\downarrow 0$<br>$\uparrow +7.43$       | $\downarrow 0$<br>$\uparrow +4.33$        | ↓0<br>↑0                               | -                                      | $\uparrow +3.00$                         | ↓0<br>↑0                                 | ↓0<br>↑0                                  | $\uparrow +0.17$<br>$\uparrow +0.77$     |
| Muons ID                            | $\downarrow -2.73$<br>$\uparrow 0$        | $\downarrow -5.06$<br>$\uparrow 0$       | $\downarrow -4.62$<br>$\uparrow 0$        | ↓0<br>↑0                               | -                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                 | ↓0<br>↑0                                  | $\uparrow 0$                             |
| Muons ID                            | ↓0<br>↑0                                  | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                               |                                        | ↓0<br>↑0                                 | ↓0<br>↑0                                 | ↓0<br>↑0                                  | <u>↓0</u><br>↑0                          |
| Muons MS                            | ↓0<br>↑0                                  | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                               | -                                      | ↓0<br>↑0                                 | ↓0<br>↑0                                 | ↓0<br>↑0                                  | ↓0<br>↑0                                 |
| Muons Sagitta RES                   | <u>↓0</u><br>↑0                           | ↓0<br>↑0                                 | <u>↓0</u><br>↑0                           | ↓0<br>↑0                               | -                                      | <u>↓0</u><br>↑0                          | <u>↓0</u><br>↑0                          | ↓0<br>↑0                                  | <u>↓0</u><br>↑0                          |
| Muons Sagitta RHO                   | ↓0<br>10                                  | ↓0<br>↑0                                 | ↓0<br>±0                                  | <u>↓0</u><br>↑0                        | _                                      | ↓0<br>±0                                 | ↓0<br>↑0                                 | <u>↓0</u><br>↑0                           | ↓0<br>↑0                                 |
| Muons Scale                         | ↓0<br>↓12 18                              | ↓0<br>↓0                                 | $\downarrow 0$                            | ↓0<br>↓0                               | _                                      | $\downarrow 0$                           | ↓0<br>↓0                                 | ↓0<br>↓0                                  | 10                                       |
| Modelling                           | $\downarrow -3.06$                        | $\downarrow -30.46$                      | $\downarrow -6.08$                        | -                                      | _                                      | $\downarrow -29.00$                      | ↓-8.89                                   | $\downarrow -38.58$                       | -                                        |
| Default PRW                         | $\downarrow -2.36$                        | $\downarrow -9.01$                       | $\downarrow +6.60$                        | $\downarrow -29.45$                    | _                                      | $\downarrow -1.14$                       | $\downarrow -1.91$                       | $\downarrow -9.00$                        | $\downarrow +0.46$                       |
| Matrix meth. (fake rate)            | _                                         | _                                        | -                                         | _                                      | $\gamma - 35.25 \\ \downarrow + 35.36$ | -                                        | _                                        | _                                         | _                                        |
| Matrix meth. (real rate)            |                                           | _                                        | _                                         | _                                      | $\uparrow +5.95 \\ \downarrow -6.08$   | _                                        | -                                        | _                                         | _                                        |
| JES (Eta)                           | $\uparrow +0.18 \\ \downarrow +4.12$      | $\uparrow +8.16 \\ \downarrow -3.19$     | ↑0<br>↓0                                  | ↑0<br>↓0                               |                                        | $\uparrow 0$<br>$\downarrow +7.85$       | ↑0<br>↓0                                 | ↑0<br>↓0                                  | $\uparrow +0.07 \\ \downarrow +0.15$     |
| Jets Energy Resolution              | ↑+4.32<br>-                               | $^{\uparrow +26.57}_{-}$                 | ↑+17.85<br>-                              | ↑-30.81<br>-                           |                                        | ↑-44.43<br>-                             | ^+4.23<br>-                              | ↑0<br>-                                   | ↑-0.05<br>-                              |
| JES (In-situ analyses - N.P.1)      | $\uparrow +2.60 \\ \downarrow -1.12$      | $\uparrow -9.84 \\ \downarrow +16.53$    | $\uparrow +5.91 \\ \downarrow +10.82$     | $\uparrow -31.90 \\ \downarrow +10.13$ |                                        | $\uparrow -53.23 \\ \downarrow +19.63$   | ↑0<br>↓0                                 | $\uparrow 0$<br>$\downarrow +7.98$        | $\uparrow -0.69 \\ \downarrow -0.30$     |
| JES (In-situ analyses - N.P.2)      | $\uparrow +1.65 \\ \downarrow +0.24$      | $\uparrow -2.11 \\ \downarrow +1.23$     | ↑0<br>↓0                                  | ↑0<br>↓0                               |                                        | $\uparrow +3.00 \\ \downarrow -1.96$     | ↑0<br>↓0                                 | ↑0<br>↓+7.98                              | $\uparrow -0.31 \\ \downarrow +0.26$     |
| JES (In-situ analyses - N.P.3)      | ↑+0.33<br>↓+0.36                          | ↑-9.09<br>↓+4.94                         | ↑+5.65<br>↓0                              | ↑0<br>⊥0                               | -                                      | ↑+1.04<br>↓0                             | ↑0<br>⊥0                                 | ↑0<br>⊥0                                  | $\uparrow -0.04 \\ \downarrow +0.43$     |

Таблица К.33. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR7 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | $V \rightarrow e\nu$                                  | $/\gamma* \rightarrow ee$                 |                                           | ingle top                            | ake                                           | iboson                                 | $7 \rightarrow \tau \nu$                  | $/\gamma^*  ightarrow 	au 	au$        | L 0700                                    |
|-------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|
|                                     | <u></u><br>↑+1 38                                     | N<br>↑+1 12                               | 5<br>↑+1 10                               | v<br>+1.65                           | ۲ <u>ــــــــــــــــــــــــــــــــــــ</u> | <br>↑+0.78                             | ∑<br>↑+0.97                               | N<br>↑+1 84                           | É                                         |
| Default Electron Identification Eff | $\downarrow -1.38$<br>$\uparrow \pm 0.75$             | $\downarrow -1.12$<br>$\uparrow \pm 0.31$ | $\downarrow -1.10$<br>$\uparrow \pm 0.79$ | $\downarrow -1.65$                   | -                                             | $\downarrow -0.78$                     | $\downarrow -0.97$<br>$\uparrow \pm 0.79$ | $\downarrow -1.84$                    | $\downarrow -1.54$<br>$\uparrow \pm 3.49$ |
| Default Electron Isolation Eff      | $\downarrow -0.75$                                    | $\downarrow -0.31$                        | $\downarrow -0.79$                        | $\downarrow -1.13$                   | _                                             | $\downarrow -0.29$                     | $\downarrow -0.79$                        | $\downarrow -2.00$                    | $\downarrow -3.49$                        |
| Default Electron Reconstruction Eff | $\downarrow -0.22$                                    | $\downarrow -0.21$                        | $\downarrow -0.20$                        | $\downarrow -0.21$                   | _                                             | $\downarrow -0.44$                     | $\downarrow -0.20$                        | $\downarrow -0.19$                    | $\downarrow -0.23$                        |
| Electrons Scale                     | $\uparrow +6.99 \\ \downarrow -0.96$                  | $\uparrow +3.25 \\ \downarrow +22.60$     | ↑0<br>↓0                                  | ↑0<br>↓0                             | _                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑+10.87<br>↓0                         | $\uparrow +0.07 \\ \downarrow -0.30$      |
| Electrons Resolution                | $\uparrow +0.89 \\ \downarrow +0.01$                  | $\uparrow +0.52 \\ \downarrow +22.48$     | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow +0.17 \\ \downarrow -0.20$      |
| Default Electron Trigger Eff        | $\uparrow +0.23 \\ \downarrow -0.23$                  | $\uparrow +0.23 \\ \downarrow -0.23$      | $\uparrow +0.21 \\ \downarrow -0.21$      | $\uparrow +0.20 \\ \downarrow -0.20$ | -                                             | $\uparrow +0.44 \\ \downarrow -0.44$   | $\uparrow +0.15 \\ \downarrow -0.15$      | $\uparrow +0.23 \\ \downarrow -0.23$  | $\uparrow +0.20 \\ \downarrow -0.20$      |
| Etmiss RES Parallel                 | $\uparrow -1.85 \\ \downarrow -1.85$                  | $\uparrow -7.75 \\ \downarrow -7.75$      | ↑0<br>↓0                                  | $\uparrow -8.83 \\ \downarrow -8.83$ |                                               | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.09 \\ \downarrow -0.09$      |
| Etmiss RES Perpendicular            | $\uparrow -2.48 \\ \downarrow -2.48$                  | ↑0<br>↓0                                  | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.17 \\ \downarrow -0.17$      |
| Etmiss Scale                        | $\uparrow -2.20 \\ \downarrow +2.48$                  | $\uparrow 0 \\ \downarrow +26.62$         | ↑0<br>↓0                                  | ↑0<br>↓0                             |                                               | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.13 \\ \downarrow -0.18$      |
| Fat jet D2 Baseline                 | $\uparrow -8.87$<br>$\downarrow +5.25$                | $\uparrow -6.61 \\ \downarrow +9.81$      | $\uparrow 0$<br>$\downarrow +42.38$       | $\uparrow -20.57$<br>$\downarrow 0$  | _                                             | ↑0<br>⊥0                               | ↑0<br>⊥0                                  | ↑0<br>⊥0                              | $\uparrow -3.87$<br>$\downarrow +3.73$    |
| Fat jet D2 Modelling                | $\uparrow -9.79$<br>+6.62                             | $\uparrow -15.22$<br>+15.38               | $\uparrow 0$<br>++42.38                   | $\uparrow -20.57$                    | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>10                              | $\uparrow -5.02$<br>+5.07                 |
| Fat jet D2 TotalStat                | $\uparrow 0$<br>$\uparrow 0$<br>$\downarrow \pm 0.12$ | ↑0<br>↓0                                  | ↑0<br>↓0                                  | ↑0<br>↓0                             | _                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.50$                          |
| Fat jet D2 Tracking                 | $\uparrow -0.10$<br>$\downarrow \pm 0.39$             |                                           | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -1.39$                          |
| Fat jet Mass Baseline               | $\uparrow -1.26$                                      | ↑-7.43                                    | ↑0<br>↓±179.65                            | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑-35.95                                   | ↑-100.00                              | $\uparrow -1.58$                          |
| Fat jet Mass Modelling              | ↑-5.42                                                | ↑-2.84                                    | ↑0<br>↓↓122.72                            | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑-35.95                                   | ↑-100.00                              | $\uparrow -1.23$                          |
| Fat jet Mass TotalStat              | $\uparrow +0.11$<br>$\downarrow -0.11$                | ↑0<br>↓0                                  | ↑0<br>10                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.10$<br>$\downarrow +0.12$    |
| Fat jet Mass Tracking               | $\uparrow -3.90$                                      | ↑-7.43<br>↓+5.83                          | ↑0<br>↓+93.34                             | ↑0<br>↓0                             | _                                             | ↑0<br>↓0                               | ↑-35.95                                   | ↑0<br>↓0                              | $\uparrow -0.84$                          |
| Fat jet pT Baseline                 | $\uparrow +3.86$<br>$\downarrow -9.63$                | $\uparrow + 26.29$                        | ↑0<br>↓0                                  | ↑0<br>↓0                             | _                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓ = 100.00                      | $\uparrow +2.39$<br>$\downarrow -2.77$    |
| Fat jet pT Modelling                | ↑+0.22<br>↓-0.96                                      | ↑+22.48                                   | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow +0.62$                          |
| Fat jet pT TotalStat                | $\uparrow 0$<br>$\uparrow 0$                          | ↑0<br>↓0                                  | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow +0.04$                          |
| Fat jet pT Tracking                 | $\uparrow +3.75$<br>$\downarrow -1.36$                | ↑+22.48                                   | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓_100.00                        | $\uparrow +1.54$<br>$\downarrow -2.23$    |
| Muons ID                            | ↑0<br>↓0                                              | ↑0<br>↓0                                  | ↑0<br>↓0                                  | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | ↑0<br>10                                  |
| Muons MS                            | ↑0<br>↓0                                              | ↑0<br>10                                  | ↑0<br>↓0                                  | <u>↓0</u><br>↑0                      | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>10                              | ↑0<br>↓0                                  |
| Muons Sagitta RES                   | ↑0<br>↓0                                              | ↑0<br>10                                  | ↑0<br>↓0                                  | <u>↓0</u><br>↑0                      | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | ↑0<br>↓0                                  |
| Muons Sagitta RHO                   | 10<br>10                                              | 10<br>10                                  | ±0<br>↑0                                  | ±0<br>↑0                             | -                                             | ↓0<br>↑0                               | ±0<br>↑0                                  | ↓0<br>↑0                              | 10<br>10                                  |
| Muons Scale                         | 10<br>10                                              | 10<br>10                                  | ↓0<br>↑0                                  | ±0<br>↑0                             | -                                             | ↓0<br>↑0                               | ↓0<br>↑0                                  | ↓0<br>↑0                              | 10<br>10                                  |
| Modelling                           | ↓0<br>↑+9.83                                          | ↓0<br>↑+50.79                             | ±0<br>↑0                                  | -<br>+0                              | -                                             | ↑+38.20                                | ↓0<br>↑+8.52                              | ↓0<br>↑+72.71                         | - 10                                      |
| Default PRW                         | $\uparrow +18.39$                                     | $\uparrow -4.39$                          | $\uparrow -13.67$                         |                                      | -                                             | $\uparrow -25.69$<br>$\uparrow -20.34$ | $\uparrow -9.58$<br>$\uparrow +0.09$      | $\uparrow -41.87$<br>$\uparrow +4.99$ | <br>↑-3.18                                |
| Matrix meth. (fake rate)            | -                                                     | ↓ <u></u>                                 | +14.(4                                    | - +-18.91                            |                                               | +10.40                                 | -<br>-                                    | -                                     | +1.23                                     |
| Matrix meth. (real rate)            | -                                                     | -                                         | -                                         | -                                    | ↑+28.77                                       | -                                      | -                                         | -                                     | -                                         |
| JES (Eta)                           | ↑-0.23                                                | <br>↑+26.62                               | <br>↑0                                    | <br>↑0                               | -                                             | <br>↑0                                 | <br>↑0                                    | <br>↑0                                | ↑-0.19                                    |
| Jets Energy Resolution              | ↑-1.02<br>-                                           | +0<br>↑+21.70                             | ↑+170.17<br>_                             | ↑-5.80                               | -                                             | ↑-96.89                                | ↑+4.23<br>_                               | ↑-100.00<br>-                         | ↑-0.35                                    |
| JES (In-situ analyses - N.P.1)      | $\uparrow +7.61$<br>$\downarrow +0.42$                | $\uparrow +3.19$<br>$\downarrow +7.62$    | ↑0<br>↓+33_16                             | ↑+3.03                               |                                               | $\uparrow -100.00$<br>+34.25           | <br>↓0                                    | ↑0<br>↓-89.13                         | $\uparrow -0.04$                          |
| JES (In-situ analyses - N.P.2)      | ↑+1.58<br>↓-1.17                                      | $\uparrow +26.62$<br>$\downarrow +4.69$   | ↑0<br>10                                  | ↑0<br>↓0                             |                                               | ↑0<br>10                               | ↑0<br>↓0                                  | ↑0<br>↓+10.87                         | $\uparrow +0.17$<br>$\downarrow -0.47$    |
| JES (In-situ analyses - N.P.3)      | $\uparrow -1.11 \\ \downarrow +1.78$                  | $\uparrow 0$<br>$\downarrow +4.14$        | ↑-34.08<br>↓0                             | ↑0<br>↓0                             | -                                             | ↑0<br>↓0                               | ↑0<br>↓0                                  | ↑0<br>↓0                              | $\uparrow -0.10$<br>$\downarrow -0.31$    |

Таблица К.34. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR8 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                       |                                         | ee                                     |                                        | do                                     | -                                                | 2                                         | ++                                     |                                         | _                                      |
|---------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|
|                                       | + ei                                    | *                                      |                                        | le t                                   | IOSO                                             | ۲<br>۲                                    | *                                      | 080(                                    | 0060                                   |
|                                       |                                         | ~/:                                    | د.                                     | ing                                    | Dibe                                             |                                           | λ/2                                    | 1                                       | 1                                      |
|                                       | A 1.05                                  | ^++1.31                                | ب<br>10.69                             | ∽<br>↑+1.70                            | ↑+0.97                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | ↑+0.45                                 | ±<br>↑+1.52                             | म<br>↑+1.50                            |
| Default Electron Identification Ell   | $\downarrow -1.05$<br>$\uparrow +0.62$  | $\downarrow -1.31$<br>$\uparrow +0.79$ | $\downarrow -0.69$<br>$\uparrow +0.09$ | $\downarrow -1.70$<br>$\uparrow +1.14$ | $\downarrow -0.97$<br>$\uparrow +0.11$           | $\downarrow -0.98$<br>$\uparrow +0.79$    | $\downarrow -0.45$<br>$\uparrow +0.06$ | $\downarrow -1.52$<br>$\uparrow +3.52$  | $\downarrow -1.50$<br>$\uparrow +3.50$ |
| Default Electron Isolation Eff        | $\downarrow -0.62$                      | $\downarrow -0.79$                     | $\downarrow -0.09$                     | $\downarrow -1.14$                     | $\downarrow -0.11$<br>$\uparrow \downarrow 0.15$ | $\downarrow -0.79$<br>$\uparrow \pm 0.18$ | $\downarrow -0.06$                     | $\downarrow -3.52$                      | $\downarrow -3.50$                     |
| Default Electron Reconstruction Eff   | $\downarrow -0.20$                      | $\downarrow -0.19$                     | $\downarrow -0.13$                     | $\downarrow -0.22$                     | $\downarrow -0.15$                               | $\downarrow -0.18$                        | $\downarrow -0.06$                     | $\downarrow -0.22$                      | $\downarrow -0.22$                     |
| Electrons Scale                       | $\downarrow -0.18$                      | ↓+0.18                                 | ↓-33.92                                | +0<br>↓0                               | 10<br>10                                         | 10<br>10                                  | 10<br>10                               | $\downarrow -0.46$                      | $\downarrow -0.17$                     |
| Electrons Resolution                  | $\uparrow -0.66 \\ \downarrow -0.16$    | ↑0<br>↓0                               | ↑-33.92<br>↓0                          | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | $\uparrow -0.45 \\ \downarrow -0.04$    | $\uparrow -0.06 \\ \downarrow +0.17$   |
| Default Electron Trigger Eff          | $\uparrow +0.19 \\ \downarrow -0.19$    | $\uparrow +0.23 \\ \downarrow -0.23$   | $\uparrow +0.11 \\ \downarrow -0.11$   | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.17 \\ \downarrow -0.17$             | $\uparrow +0.14 \\ \downarrow -0.14$      | $\uparrow +0.05 \\ \downarrow -0.05$   | $\uparrow +0.20 \\ \downarrow -0.20$    | $\uparrow +0.20 \\ \downarrow -0.20$   |
| Etmiss RES Parallel                   | $\uparrow -2.28 \\ \downarrow -2.28$    | $\uparrow -6.87 \\ \downarrow -6.87$   | $\uparrow -1.79 \\ \downarrow -1.79$   | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | $\uparrow -0.10 \\ \downarrow -0.10$    | $\uparrow +0.08 \\ \downarrow +0.08$   |
| Etmiss RES Perpendicular              | $\uparrow -0.82$<br>$\downarrow -0.82$  | 0↑<br>0                                | ↑0<br>.1.0                             | ↑0<br>.1.0                             | $\uparrow -64.59$<br>$\downarrow -64.59$         | ↑0<br>.1.0                                | ↑0<br>.1.0                             | $\uparrow -0.14$                        | $\uparrow +0.12$<br>+0.12              |
| Etmiss Scale                          | $\uparrow -1.79$<br>+0.92               | ↑0<br>↓+6_19                           | ↑0<br>↓-33.92                          | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑+0.01<br>↓-0.11                        | $\uparrow +0.15$<br>+0.05              |
| Fat jet D2 Baseline                   | ↑-6.00                                  | $\uparrow -4.84$                       | ↑0<br>↓↓42.47                          | ↑-20.53                                | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑-3.76                                  | $\uparrow -4.66$                       |
| Fat jet D2 Modelling                  | ↑-6.24                                  | ↑-17.73                                | ↑0<br>↓↓ 40, 47                        | ↑-20.53                                | ↑0                                               | ↑0                                        | ↑0<br>10                               | ↑-5.65                                  | ↑-6.50                                 |
| Fat jet D2 TotalStat                  | ↓+9.24<br>↑0                            | ↓+12.43<br>↑0                          | ↓+42.47<br>↑0                          | ±0<br>↑0                               | ↓0<br>↑0                                         | ↓0<br>↑0                                  | ↓0<br>↑0                               | $\uparrow -0.17$                        | $\uparrow -0.32$                       |
| Fat jet D2 Tracking                   | $\uparrow +0.36$<br>$\uparrow -1.56$    | ↓0<br>↑0                               | <u>↓0</u><br>↑0                        | ↓0<br>↑0                               | <u>↓0</u><br>↑0                                  | <u>↓0</u><br>↑0                           | ↓0<br>↑0                               | $\uparrow -0.34$                        | $\uparrow +0.24$<br>$\uparrow -0.47$   |
| Fat jet Mass Passline                 | $\downarrow +0.65$<br>$\uparrow -1.54$  | $\downarrow 0$<br>$\uparrow -13.88$    | ↓0<br>↑0                               | ↓0<br>↑0                               | ↓0<br>↑0                                         | $\downarrow 0$<br>$\uparrow -36.14$       | ↓0<br>↑0                               | $\downarrow +0.57$<br>$\uparrow -0.70$  | $\downarrow +0.47$<br>$\uparrow -0.52$ |
| Fat jet Mass Basenne                  | $\downarrow -29.64$<br>$\uparrow -8.04$ | $\downarrow +4.22$<br>$\uparrow -7.02$ | ↓0<br>↑0                               | ↓0<br>↑0                               | $\downarrow +7.52$<br>$\uparrow 0$               | $\downarrow 0$<br>$\uparrow -36.14$       | ↓0<br>↑0                               | $\downarrow +0.07$<br>$\uparrow -1.50$  | $\downarrow +0.28$<br>$\uparrow -1.30$ |
| Fat jet Mass Modelling                | $\downarrow -24.13$                     | +4.22                                  | <u>↓0</u>                              | <u>↓0</u>                              | $\downarrow +7.52$                               | ↓0<br>                                    | <u>↓0</u>                              | $\downarrow +0.11$<br>$\uparrow -0.14$  | $\downarrow -0.03$                     |
| Fat jet Mass TotalStat                | $\downarrow -0.18$                      | ↓0<br>↓0                               |                                        |                                        | ↓+7.52                                           | ↓0<br>↓0                                  |                                        | $\downarrow +0.02$                      | $\downarrow +0.17$                     |
| Fat jet Mass Tracking                 | $\downarrow -22.99$                     | $\downarrow -0.47$                     | +0<br>↓0                               | +0<br>↓0                               | $\downarrow^{+0}_{+7.52}$                        | +7−36.14<br>↓0                            | 10<br>10                               | $\downarrow^{+-1.14}_{\downarrow+0.42}$ | $1-0.68 \\ \downarrow +0.49$           |
| Fat jet pT Baseline                   | $\uparrow +13.68 \\ \downarrow -3.81$   | ↑0<br>↓0                               | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$         | ↑0<br>↓0                                         | ↑0<br>↓0                                  | $\uparrow 0$<br>$\downarrow 0$         | $\uparrow +1.94 \\ \downarrow -2.06$    | $\uparrow +1.58 \\ \downarrow -1.73$   |
| Fat jet pT Modelling                  | $\uparrow +0.72 \\ \downarrow -0.79$    | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | $\uparrow +0.68 \\ \downarrow -0.54$    | $\uparrow +0.49 \\ \downarrow -0.59$   |
| Fat jet pT TotalStat                  | $\uparrow +0.17 \\ \downarrow -0.60$    | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | $\uparrow +0.17 \\ \downarrow -0.15$    | $\uparrow +0.11 \\ \downarrow -0.15$   |
| Fat jet pT Tracking                   | $\uparrow +1.44 \\ \downarrow -2.74$    | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | $\uparrow +1.28 \\ \downarrow -1.24$    | $\uparrow +1.24 \\ \downarrow -0.96$   |
| Muons ID                              | ↑0<br>.1.0                              | 0↑<br>0                                | ↑0<br>.1.0                             | ↑0<br>.1.0                             | 0<br>↓0                                          | 0<br>↓0                                   | ↑0<br>.1.0                             | 0↑<br>                                  | ↑0<br>↓0                               |
| Muons MS                              | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Muons Sagitta RES                     | ↑0<br>↓0                                | ↑0<br>↓0                               |                                        |                                        | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Muons Sagitta RHO                     |                                         | ↑0<br>↓0                               |                                        |                                        | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Muons Scale                           | ↑0<br>↓0                                | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                                         | ↑0<br>↓0                                  | ↑0<br>↓0                               | ↑0<br>↓0                                | ↑0<br>↓0                               |
| Modelling                             | ↑+10.27<br>↓ 7.16                       | ↑+49.88                                | ↑+19.32                                | - +0                                   | ↑+17.28                                          | ↑+9.00<br>10.52                           | ↑+7.53                                 | -                                       | -                                      |
| Default PRW                           | ↑+10.81                                 | ↑-2.12                                 | ↑-16.70                                |                                        | $\uparrow -10.76$                                | +0.97                                     | ↑+107.50                               |                                         |                                        |
| JES (Eta)                             | $\uparrow -1.61$                        | $\uparrow +6.19$                       | $\uparrow -33.92$                      | $\uparrow 0$                           | ↑0<br>↓0                                         | ↓ <u>-3.34</u><br>↑0                      | ↑0<br>↓0                               | +0.09                                   | $\uparrow -0.10$                       |
| Jets Energy Resolution                | ↑+1.29                                  | +18.38<br>↑+13.02                      | +105.63                                | +10.49                                 | ↑-64.59                                          | +4.38                                     | ↑-100.00                               | $\uparrow -0.52$                        | $\uparrow +0.27$<br>$\uparrow +0.52$   |
| JES (In-situ analyses - N.P.1)        | <br>↑-0.13                              |                                        |                                        | <br>↑0                                 | <br>↑0                                           | <br>↑0                                    | <br>↑0                                 |                                         |                                        |
| JES (In-situ analyses - N.P.2)        | ↓-2.22<br>↑+1.14                        | ↓ <u>-4.08</u><br>↑ <u>+6.19</u>       | ↑0<br>0                                |                                        | ↑0<br>↑0                                         | ↓0<br>↑0                                  |                                        | ↑+0.06                                  | 1 + 0.46                               |
| JES (In-situ analyses - N.P.3)        | $\uparrow -1.22$<br>$\uparrow -1.33$    | $\downarrow 0$<br>$\uparrow +14.68$    | $\uparrow -33.92$<br>$\uparrow -33.92$ | <u>↓0</u><br>↑0                        | ↓-64.59<br>↑0                                    | ↓0<br>↑0                                  | 10<br>10                               | $\uparrow -0.71$<br>$\uparrow -0.04$    | +0.47<br>+0.33                         |
| · · · · · · · · · · · · · · · · · · · | $\downarrow -0.78$                      | $\downarrow +2.11$                     | 1 10                                   | 1 10                                   | 1 10                                             | ↓0                                        | 1 10                                   | $\downarrow -0.25$                      | $\downarrow -0.03$                     |

Таблица К.35. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     |                                          | 99 .                                               |                                        | do                                   |                                                          |                                        |                                        |                                        |                                        | _                                      |
|-------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                     | 19                                       | Î Î                                                |                                        | e te                                 | son                                                      | 71                                     | 000                                    | 250                                    | 200                                    | 750                                    |
|                                     | ↑                                        | *~                                                 |                                        | ngl                                  | poq                                                      | _ ↑                                    |                                        | H                                      |                                        |                                        |
|                                     | М                                        | Ň                                                  | tt                                     | Si                                   | Di                                                       | A                                      | E                                      | EI                                     | Ē                                      | EI                                     |
| Default Electron Identification Eff | $\uparrow +0.96 \\ \downarrow -0.96$     | $\uparrow +1.21 \\ \downarrow -1.21$               | ↑+0.34<br>↓-0.34                       | $\uparrow +1.82 \\ \downarrow -1.82$ | $\uparrow +0.97 \\ \downarrow -0.97$                     | $\uparrow +1.02 \\ \downarrow -1.02$   | $\uparrow +1.51 \\ \downarrow -1.51$   | $\uparrow +1.51 \\ \downarrow -1.51$   | $\uparrow +1.49 \\ \downarrow -1.49$   | $\uparrow +1.50 \\ \downarrow -1.50$   |
| Default Electron Isolation Eff      | $\uparrow +0.52 \\ \downarrow -0.52$     | $\uparrow +0.51$<br>$\downarrow -0.51$             | $\uparrow +0.06$<br>$\downarrow -0.06$ | $\uparrow +1.24 \\ \downarrow -1.24$ | $\uparrow +0.11$<br>$\downarrow -0.11$                   | ↑+0.83<br>↓-0.83                       | $\uparrow +3.60 \\ \downarrow -3.60$   | $\uparrow +3.75 \\ \bot -3.75$         | $\uparrow +3.76 \\ \downarrow -3.76$   | ↑+3.83<br>↓-3.83                       |
| Default Electron Reconstruction Eff | $\uparrow +0.20 \\ \downarrow -0.20$     | $\uparrow +0.16 \\ \downarrow -0.16$               | ↑+0.09<br>↓-0.09                       | $\uparrow +0.23 \\ \downarrow -0.23$ | $\uparrow +0.15 \\ \downarrow -0.15$                     | $\uparrow +0.18 \\ \downarrow -0.18$   | ↑+0.23<br>↓-0.23                       | ↑+0.23<br>↓-0.23                       | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.23 \\ \downarrow -0.23$   |
| Electrons Scale                     | $\uparrow +15.44 \\ \downarrow -0.01$    | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | $\uparrow +0.03 \\ \downarrow -0.23$   | $\uparrow +0.30 \\ \downarrow -0.23$   | $\uparrow +0.40 \\ \downarrow -0.32$   | $\uparrow +0.26 \\ \downarrow -0.39$   |
| Electrons Resolution                | $\uparrow 0$<br>$\downarrow \pm 0.25$    | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | $\uparrow +0.21$<br>+0.01              | $\uparrow -0.02$                       | $\uparrow -0.00$                       | $\uparrow -0.12$<br>+0.12              |
| Default Electron Trigger Eff        | $\uparrow +0.19 \\ \downarrow -0.19$     | $\uparrow +0.14 \\ \downarrow -0.15$               | ↑+0.06<br>↓-0.06                       | ↑+0.22<br>↓-0.22                     | $\uparrow +0.17 \\ \downarrow -0.17$                     | ↑+0.14<br>↓-0.14                       | $\uparrow +0.20 \\ \downarrow -0.20$   | ↑+0.20<br>↓-0.20                       | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.19 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow -0.78$<br>$\downarrow -0.78$   | $\uparrow -16.45$<br>$\downarrow -16.45$           | ↑0<br>↓0                               | ↑0<br>⊥0                             | ↑0<br>⊥0                                                 | $\uparrow -3.96$<br>$\downarrow -3.96$ | $\uparrow -0.05$<br>$\downarrow -0.05$ | $\uparrow -0.06$<br>$\downarrow -0.06$ | $\uparrow -0.02$<br>$\downarrow -0.02$ | $\uparrow -0.04$<br>$\downarrow -0.04$ |
| Etmiss RES Perpendicular            | $\uparrow -0.82$<br>$\downarrow -0.82$   | $\uparrow -9.47$<br>$\downarrow -9.47$             | ↑0<br>.1.0                             | ↑0<br>↓0                             | $\uparrow -64.59$<br>$\downarrow -64.59$                 | ↑-3.96                                 | $\uparrow +0.10$<br>$\downarrow +0.10$ | ↑+0.03<br>↓+0.03                       | $\uparrow -0.07$                       | $\uparrow -0.00$                       |
| Etmiss Scale                        | ↑-1.08                                   | ↑-9.47                                             | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | $\uparrow +0.02$                       | ↑+0.06                                 | $\uparrow -0.04$                       | ↑+0.05                                 |
| Fat jet D2 Baseline                 | $\uparrow -6.76$                         | ↑-11.59                                            | ↑0<br>↓0                               | ↑-12.85                              | ±0<br>↑0                                                 | ↑0<br>↓0                               | $\uparrow -4.32$                       | ↑-5.74                                 | $\uparrow -4.45$                       | $\uparrow -6.21$                       |
| Fat jet D2 Modelling                | $\uparrow -6.84$                         | $\uparrow -31.75$                                  | 10<br>10                               | ↑-12.85                              | ±0<br>↑0                                                 | ±0<br>↑0                               | $\uparrow -6.42$                       | $\uparrow -6.79$                       | $\uparrow -5.65$                       | 1 1 − 7.81                             |
| Eat jet D2 TotalStat                | ↓+8.24<br>↑0                             | ↓+20.75<br>↑0                                      | ↓0<br>↑0                               | <br>↑0                               | ↓0<br>↑0                                                 | ↓0<br>↑0                               | $\uparrow -0.17$                       | $\uparrow +6.23$<br>$\uparrow -0.61$   | $\uparrow -0.59$                       | $\uparrow -0.70$                       |
| Fat jet D2 Tracking                 | $\downarrow +0.52$<br>$\uparrow -2.26$   | ↓0<br>↑0                                           | ↓0<br>↑0                               | ↓0<br>↑0                             | ↓0<br>↑0                                                 | ↓0<br>↑0                               | $\downarrow +0.14$<br>$\uparrow -0.62$ | $\downarrow +0.45$<br>$\uparrow -0.90$ | $\downarrow +0.55$<br>$\uparrow -0.78$ | $\downarrow +0.55$<br>$\uparrow -0.86$ |
| Fat jet D2 Hacking                  | $\downarrow +0.64$<br>$\uparrow -4.44$   | $\downarrow 0$<br>$\uparrow -16.45$                | ↓0<br>↑0                               | ↓0<br>↑0                             | ↓0<br>↑0                                                 | $\downarrow 0$<br>$\uparrow -38.48$    | $\downarrow +0.55$<br>$\uparrow -0.29$ | $\downarrow +0.72$<br>$\uparrow -0.68$ | $\downarrow +0.93$<br>$\uparrow -1.81$ | $\downarrow +1.10$<br>$\uparrow -0.96$ |
| Fat jet Mass Baseline               | $\downarrow -39.58$<br>$\uparrow -14.10$ | ↓-0.36<br>↑0                                       | <u>↓0</u><br>↑0                        | <u>↓0</u><br>10                      | $\downarrow +7.52$                                       | $\downarrow 0$<br>$\uparrow -38.48$    | 1 - 0.07<br>1 - 0.55                   | 1 - 0.02<br>1 - 0.58                   | $\downarrow -0.08$<br>$\uparrow -1.45$ | 1 - 0.17<br>1 - 0.93                   |
| Fat jet Mass Modelling              | $\downarrow -39.33$                      | ↓-0.36                                             | 10                                     | 10                                   | $\downarrow +7.52$                                       | 10                                     | ↓+0.39                                 | $\downarrow -0.19$                     | $\downarrow -0.25$                     | $\downarrow -0.18$                     |
| Fat jet Mass TotalStat              | $\uparrow +0.22 \\ \downarrow -0.26$     | $\uparrow 0 \\ \downarrow 0$                       | ↑0<br>↓0                               | $\uparrow 0$<br>$\downarrow 0$       | $^{\uparrow 0}_{\downarrow +7.52}$                       | ↑0<br>↓0                               | $\uparrow -0.19 \\ \downarrow +0.04$   | $\uparrow -0.18 \\ \downarrow -0.03$   | $\uparrow -0.35 \\ \downarrow +0.15$   | $\uparrow -0.53 \\ \downarrow +0.36$   |
| Fat jet Mass Tracking               | $\uparrow -6.49 \\ \downarrow -36.97$    | $\uparrow -16.45$<br>$\downarrow -11.59$           | ↑0<br>↓0                               | ↑0<br>↓0                             | $\uparrow 0$<br>$\downarrow +7.52$                       | $\uparrow -38.48$<br>$\downarrow 0$    | $\uparrow +0.16 \\ \downarrow +0.74$   | $\uparrow -0.46 \\ \downarrow -0.08$   | $\uparrow -1.52 \\ \downarrow +0.10$   | $\uparrow -0.64 \\ \downarrow +0.08$   |
| Fat jet pT Baseline                 | $\uparrow +2.00 \\ \downarrow -13.98$    | $\uparrow 0$<br>$\downarrow -9.47$                 | ↑0<br>↓0                               | ↑0<br>⊥0                             | ↑0<br>⊥0                                                 | ↑0<br>↓-3.96                           | $\uparrow +1.79 \\ \downarrow -2.02$   | ↑+2.03<br>↓-2.09                       | $\uparrow +1.75 \\ \downarrow -1.87$   | $\uparrow +1.98 \\ \downarrow -1.65$   |
| Fat jet pT Modelling                | ↑+0.83<br>↓-10.99                        | 0↑<br>↓0                                           | 0<br>_⊥0                               | <br>↓0                               | ↑0<br>⊥0                                                 | ↑0<br>⊥0                               | ↑+0.46<br>↓-0.68                       | ↑+0.61<br>↓-0.84                       | $\uparrow +0.41$<br>$\downarrow -0.67$ | ↑+0.78<br>↓-0.44                       |
| Fat jet pT TotalStat                | $\uparrow +0.24$                         | ↑0<br>↓0                                           | ↑0<br>10                               | ↑0<br>10                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | $\uparrow +0.15$<br>$\downarrow -0.15$ | $\uparrow +0.19$<br>$\downarrow -0.25$ | $\uparrow +0.09$                       | $\uparrow +0.17$<br>$\downarrow -0.21$ |
| Fat jet pT Tracking                 | ↑+1.20<br>↓-13.51                        | $\uparrow 0$<br>$\downarrow -9.47$                 | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓_3.96                           | ↑+1.39<br>↓-1.26                       | ↑+1.39<br>↓-1.41                       | $\uparrow +1.18$                       | ↑+1.33<br>↓-1.07                       |
| Muons ID                            | ↑0<br>↓0                                 | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | +0<br>↑0                                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>10                                 | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                                 | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>10                                 | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                                 | ↑0<br>↓0                                           | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               | ↑0<br>↓0                               |
| Modelling                           | ↑+10.49                                  | ↑+52.91                                            | ↑+22.60                                | -                                    | ↑+17.28<br>18 21                                         | ↑+10.05                                | -                                      | - +0                                   | -                                      | -                                      |
| Default PRW                         | $\uparrow +14.25$                        | ↑+3.12<br>12.01                                    | ↑-11.41                                | ↑+19.72                              | ↑-10.76                                                  | ↑+0.35                                 | ^-0.96                                 | ↑-0.03                                 | ↑-1.60                                 | ^-2.65                                 |
| JES (Eta)                           | $\uparrow +0.82$                         | $\uparrow 0$<br>$\uparrow 0$<br>$\downarrow -9.47$ | ↑0<br>↓0                               | ↑0<br>↓0                             | ↑0<br>↓0                                                 | ↑0<br>↓0                               | $\uparrow -0.10$                       | $\uparrow -0.03$                       | $\uparrow -0.02$                       | $\uparrow +0.00$                       |
| Jets Energy Resolution              | +4.04                                    | ↑+2.01                                             | ^+218.42                               | ^++11.51                             | $\uparrow -64.59$                                        | ↑-6.22                                 | ++0.24                                 | +0.14                                  | ++0.15                                 | ↑-0.04                                 |
| JES (In-situ analyses - N.P.1)      |                                          | <br>↑0                                             | <br>↑0                                 | <br>↑0                               |                                                          | <br>↑0                                 | <br>↑+0.54                             | ^-0.47                                 |                                        | <br>↑-0.48                             |
| JES (In-situ analyses - N.P.2)      | $\uparrow +0.57$                         | ↓ <u>-9.47</u><br>↑0                               | ↓0<br>↑0                               | ↓0<br>↑0                             | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | ↑0<br>↑0                               | $\uparrow +0.02$<br>$\uparrow +0.13$   | $\uparrow +0.18$<br>$\uparrow +0.05$   | $\uparrow +0.19$<br>$\uparrow -0.24$   | $\uparrow +0.07$<br>$\uparrow -0.49$   |
| IES (In-situ analyses - N P 2)      | $\uparrow +0.53$                         | $\uparrow -9.47$<br>$\uparrow -9.47$               | <u>↓0</u><br>↑0                        | <u>↓0</u><br>↑0                      | 1 + -64.59<br>$\uparrow 0$                               | $\uparrow 0$                           | $\uparrow +0.09$<br>$\uparrow +0.15$   | $\uparrow +0.30$<br>$\uparrow +0.07$   | $\uparrow +0.44$<br>$\uparrow -0.01$   | $\uparrow +0.22$<br>$\uparrow -0.21$   |
| JES (In-situ analyses - N.P.3)      | +0.26                                    | 10                                                 | Lõ                                     | Lõ                                   | Lõ                                                       | -3.96                                  | 1-0.04                                 | +0.07                                  | 1+0.08                                 | 1+0.11                                 |

Таблица К.36. Измеренные систематические неопределенности для различных систематических источников относительно номинальных чисел событий отдельных процессов в SR9 поиска возбужденных электронов. Стрелка — направление вариации источника, числа (со знаками) — соответствующие вклады в %.

|                                     | 5000                                   | 2250                                   | 2500                                   | 2750                                   | 3000                                   | 3250                                   | 3500                                   | 3750                                   | 1000                                   |
|-------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                     | EL                                     |
| Default Electron Identification Eff | $\uparrow +1.48$<br>$\downarrow -1.48$ | $\uparrow +1.49$<br>$\downarrow -1.49$ | $\uparrow +1.45$                       | $\uparrow +1.46$                       | $\uparrow +1.45$<br>$\downarrow -1.45$ | $\uparrow +1.44$                       | $\uparrow +1.48$<br>$\downarrow -1.48$ | ↑+1.43<br>↓-1.43                       | $\uparrow +1.46$<br>$\downarrow -1.46$ |
| Default Electron Isolation Eff      | $\uparrow +3.89$<br>$\downarrow -3.89$ | $\uparrow +3.87$<br>$\downarrow -3.87$ | $\uparrow +3.92 \\ \downarrow -3.92$   | $\uparrow +3.90 \\ \downarrow -3.90$   | ↑+3.91<br>↓-3.91                       | $\uparrow +3.89 \\ \downarrow -3.89$   | $\uparrow +3.86$<br>$\downarrow -3.86$ | $\uparrow +3.91 \\ \downarrow -3.91$   | $\uparrow +3.90 \\ \downarrow -3.90$   |
| Default Electron Reconstruction Eff | $\uparrow +0.21 \\ \downarrow -0.21$   | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.22 \\ \downarrow -0.22$   | $\uparrow +0.22 \\ \downarrow -0.21$   | $\uparrow +0.22 \\ \downarrow -0.22$   |
| Electrons Scale                     | $\uparrow +0.35 \\ \downarrow -0.43$   | $\uparrow +0.19 \\ \downarrow -0.11$   | $\uparrow +0.38 \\ \downarrow -0.29$   | ↑+0.33<br>↓-0.38                       | $\uparrow +0.16 \\ \downarrow -0.23$   | $\uparrow +0.26 \\ \downarrow -0.28$   | $\uparrow +0.16 \\ \downarrow -0.15$   | $\uparrow +0.12 \\ \downarrow -0.46$   | $\uparrow +0.13 \\ \downarrow -0.22$   |
| Electrons Resolution                | $\uparrow -0.14 \\ \downarrow -0.06$   | $\uparrow -0.02 \\ \downarrow +0.05$   | $\uparrow +0.03 \\ \downarrow -0.02$   | $\uparrow +0.02 \\ \downarrow +0.05$   | $\uparrow -0.10 \\ \downarrow -0.01$   | $\uparrow -0.05 \\ \downarrow +0.17$   | ↑+0.01<br>↓-0.07                       | $\uparrow -0.05 \\ \downarrow -0.02$   | ↑+0.04<br>↓-0.03                       |
| Default Electron Trigger Eff        | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.19 \\ \downarrow -0.19$   | $\uparrow +0.18 \\ \downarrow -0.18$   | $\uparrow +0.19 \\ \downarrow -0.19$   |
| Etmiss RES Parallel                 | $\uparrow -0.06 \\ \downarrow -0.06$   | $\uparrow +0.03 \\ \downarrow +0.03$   | $\uparrow -0.04 \\ \downarrow -0.04$   | $\uparrow -0.12 \\ \downarrow -0.12$   | $\uparrow -0.23 \\ \downarrow -0.23$   | $\uparrow -0.06 \\ \downarrow -0.06$   | ↑-0.04<br>↓-0.04                       | $\uparrow -0.12 \\ \downarrow -0.12$   | ↑-0.03<br>↓-0.03                       |
| Etmiss RES Perpendicular            | $\uparrow -0.18 \\ \downarrow -0.18$   | ↑+0.08<br>↓+0.08                       | $\uparrow +0.06 \\ \downarrow +0.06$   | $\uparrow -0.21 \\ \downarrow -0.21$   | $\uparrow -0.32 \\ \downarrow -0.32$   | ↑+0.06<br>↓+0.06                       | ↑-0.01<br>↓-0.01                       | $\uparrow -0.12 \\ \downarrow -0.12$   | $\uparrow -0.07 \\ \downarrow -0.07$   |
| Etmiss Scale                        | $\uparrow -0.12 \\ \downarrow +0.00$   | ↑-0.02<br>↓0                           | ↑0<br>↓-0.08                           | $\uparrow -0.03 \\ \downarrow -0.10$   | $\uparrow -0.27 \\ \downarrow +0.04$   | ↑+0.03<br>↓-0.03                       | ↑-0.01<br>↓-0.03                       | ↑0<br>↓0                               | ↑-0.03<br>↓0                           |
| Fat jet D2 Baseline                 | $\uparrow -6.77 \\ \downarrow +6.27$   | $\uparrow -5.73 \\ \downarrow +6.33$   | $\uparrow -6.22 \\ \downarrow +6.19$   | $\uparrow -6.62 \\ \downarrow +7.08$   | $\uparrow -6.14 \\ \downarrow +6.42$   | $\uparrow -6.96 \\ \downarrow +8.50$   | $\uparrow -6.87 \\ \downarrow +8.36$   | $\uparrow -6.74 \\ \downarrow +6.83$   | $\uparrow -7.85 \\ \downarrow +7.64$   |
| Fat jet D2 Modelling                | $\uparrow -8.52$<br>$\downarrow +7.22$ | $\uparrow -6.52 \\ \downarrow +7.15$   | $\uparrow -6.76$<br>$\downarrow +7.17$ | $\uparrow -7.10 \\ \downarrow +7.58$   | $\uparrow -5.99$<br>$\downarrow +6.76$ | $\uparrow -7.07 \\ \downarrow +8.54$   | $\uparrow -7.02$<br>$\downarrow +8.29$ | $\uparrow -7.02 \\ \downarrow +6.69$   | $\uparrow -7.70 \\ \downarrow +7.56$   |
| Fat jet D2 TotalStat                | $\uparrow -1.09 \\ \downarrow +0.50$   | $\uparrow -0.72 \\ \downarrow +0.88$   | $\uparrow -1.27$<br>$\downarrow +1.50$ | $\uparrow -1.72 \\ \downarrow +1.59$   | $\uparrow -1.37 \\ \downarrow +1.60$   | $\uparrow -1.74 \\ \downarrow +2.64$   | $\uparrow -2.47$<br>$\downarrow +3.33$ | $\uparrow -3.08 \\ \downarrow +2.78$   | $\uparrow -3.82 \\ \downarrow +3.57$   |
| Fat jet D2 Tracking                 | $\uparrow -1.14 \\ \downarrow +0.84$   | $\uparrow -0.87$<br>$\downarrow +0.87$ | $\uparrow -0.74$<br>$\downarrow +0.95$ | $\uparrow -0.84$<br>$\downarrow +1.16$ | $\uparrow -0.57$<br>$\downarrow +0.59$ | ↑-1.03<br>↓+1.04                       | $\uparrow -0.81$<br>$\downarrow +1.49$ | $\uparrow -1.05 \\ \downarrow +1.17$   | $\uparrow -1.15 \\ \downarrow +1.10$   |
| Fat jet Mass Baseline               | $\uparrow -1.42$<br>$\downarrow -0.89$ | $\uparrow -1.85$<br>$\downarrow -0.51$ | $\uparrow +0.25 \\ \downarrow -0.19$   | $\uparrow -1.50$<br>$\downarrow -0.39$ | $\uparrow -1.26 \\ \downarrow +0.70$   | $\uparrow -1.78 \\ \downarrow -0.28$   | $\uparrow -1.11$<br>$\downarrow -0.10$ | $\uparrow -1.05 \\ \downarrow +0.71$   | $\uparrow -1.89$<br>$\downarrow +1.06$ |
| Fat jet Mass Modelling              | $\uparrow -0.53$<br>$\downarrow +0.01$ | $\uparrow -1.66$<br>$\downarrow -0.53$ | $\uparrow +0.80 \\ \downarrow +0.28$   | $\uparrow -0.68$<br>$\downarrow +0.19$ | $\uparrow -0.15$<br>$\downarrow +0.51$ | $\uparrow -0.57$<br>$\downarrow -0.23$ | $\uparrow +0.32$<br>$\downarrow -0.21$ | $\uparrow -0.88$<br>$\downarrow +0.58$ | $\uparrow -0.18$<br>$\downarrow +0.52$ |
| Fat jet Mass TotalStat              | $\uparrow -0.51$<br>$\downarrow -0.19$ | $\uparrow -0.45 \\ \downarrow +0.07$   | $\uparrow -0.40$<br>$\downarrow +0.03$ | $\uparrow -0.09$<br>$\downarrow +0.36$ | $\uparrow -0.75$<br>$\downarrow +1.77$ | $\uparrow -1.12 \\ \downarrow +0.20$   | $\uparrow -0.38$<br>$\downarrow +0.15$ | $\uparrow -1.18 \\ \downarrow +1.61$   | $\uparrow -1.16$<br>$\downarrow +1.37$ |
| Fat jet Mass Tracking               | $\uparrow -0.46$<br>$\downarrow +0.30$ | $\uparrow -0.80$<br>$\downarrow -0.31$ | $\uparrow +0.98$<br>$\downarrow +0.20$ | $\uparrow -0.69 \\ \downarrow +0.23$   | $\uparrow -0.47$<br>$\downarrow +0.59$ | $\uparrow -0.67 \\ \downarrow +0.01$   | $\uparrow +0.33$<br>$\downarrow -0.41$ | $\uparrow -0.78 \\ \downarrow +0.95$   | $\uparrow -0.08$<br>$\downarrow +0.36$ |
| Fat jet pT Baseline                 | $\uparrow +1.84 \\ \downarrow -2.68$   | $\uparrow +1.83$<br>$\downarrow -2.20$ | $\uparrow +3.03$<br>$\downarrow -2.34$ | ↑+2.84<br>↓-2.38                       | ↑+3.30<br>↓-2.08                       | $\uparrow +3.19 \\ \downarrow -3.06$   | ↑+3.94<br>↓-3.02                       | $\uparrow +2.97 \\ \downarrow -2.82$   | $\uparrow +3.47 \\ \downarrow -3.01$   |
| Fat jet pT Modelling                | $\uparrow +0.66$<br>$\downarrow -0.84$ | $\uparrow +0.59 \\ \downarrow -0.38$   | $\uparrow +0.95$<br>$\downarrow -0.66$ | $\uparrow +0.73$<br>$\downarrow -0.82$ | $\uparrow +0.59 \\ \downarrow -0.50$   | $\uparrow +0.70 \\ \downarrow -0.69$   | ↑+1.21<br>↓-0.61                       | $\uparrow +1.14 \\ \downarrow -0.62$   | $\uparrow +0.90 \\ \downarrow -0.80$   |
| Fat jet pT TotalStat                | $\uparrow +0.22 \\ \downarrow -0.40$   | $\uparrow +0.53 \\ \downarrow -0.31$   | $\uparrow +0.64 \\ \downarrow -0.50$   | $\uparrow +0.74 \\ \downarrow -0.74$   | ↑+0.38<br>↓-0.37                       | $\uparrow +0.77 \\ \downarrow -0.87$   | ↑+1.14<br>↓-0.93                       | $\uparrow +1.30 \\ \downarrow -1.01$   | $\uparrow +1.45 \\ \downarrow -1.41$   |
| Fat jet pT Tracking                 | $\uparrow +1.16 \\ \downarrow -1.59$   | $\uparrow +1.26 \\ \downarrow -1.16$   | $\uparrow +1.71 \\ \downarrow -1.18$   | $\uparrow +1.74 \\ \downarrow -1.37$   | $\uparrow +1.95 \\ \downarrow -1.02$   | $\uparrow +1.73 \\ \downarrow -1.53$   | ↑+2.23<br>↓-1.48                       | $\uparrow +1.83 \\ \downarrow -1.46$   | $\uparrow +1.83 \\ \downarrow -1.79$   |
| Muons ID                            | ↑0<br>↓0                               |
| Muons MS                            | ↑0<br>↓0                               |
| Muons Sagitta RES                   | ↑0<br>↓0                               |
| Muons Sagitta RHO                   | ↑0<br>↓0                               |
| Muons Scale                         | ↑0<br>↓0                               |
| Default PRW                         | $\uparrow -0.84 \\ \downarrow +0.68$   | $\uparrow -1.30 \\ \downarrow +0.62$   | $\uparrow -2.42 \\ \downarrow +1.89$   | $\uparrow -2.30 \\ \downarrow +1.48$   | $\uparrow +0.38 \\ \downarrow -0.45$   | $\uparrow -1.21 \\ \downarrow +0.41$   | $\uparrow -2.08 \\ \downarrow +1.37$   | $\uparrow +0.74 \\ \downarrow +0.77$   | $\uparrow -0.23 \\ \downarrow +1.23$   |
| JES (Eta)                           | $\uparrow +0.01 \\ \downarrow -0.09$   | $\uparrow +0.05 \\ \downarrow -0.05$   | $\uparrow +0.05 \\ \downarrow +0.05$   | $\uparrow -0.00 \\ \downarrow -0.07$   | $\uparrow 0$<br>$\downarrow -0.23$     | $\uparrow -0.08 \\ \downarrow +0.04$   | $\uparrow -0.04 \\ \downarrow +0.03$   | ↑0<br>↓-0.03                           | ↑+0.03<br>↓+0.03                       |
| Jets Energy Resolution              | ↑-0.12<br>-                            | ^++0.07<br>                            | ↑-0.05<br>-                            | ^++0.24<br>                            | ↑-0.01<br>-                            | ^++0.24<br>                            | ↑+0.17<br>_                            | ↑-0.02<br>-                            | ↑-0.06<br>-                            |
| JES (In-situ analyses - N.P.1)      | $\uparrow -0.34 \\ \downarrow +0.45$   | $\uparrow -0.06 \\ \downarrow +0.14$   | $\uparrow -0.30 \\ \downarrow +0.43$   | $\uparrow -0.48 \\ \downarrow +0.27$   | $\uparrow -0.31 \\ \downarrow +0.20$   | $\uparrow -0.23 \\ \downarrow +0.29$   | $\uparrow -0.19 \\ \downarrow +0.23$   | $\uparrow -0.55 \\ \downarrow +0.14$   | $\uparrow -0.19 \\ \downarrow +0.18$   |
| JES (In-situ analyses - N.P.2)      | $\uparrow -0.65 \\ \downarrow +0.52$   | $\uparrow -0.18 \\ \downarrow +0.28$   | $\uparrow -0.36 \\ \downarrow +0.30$   | $\uparrow -0.50 \\ \downarrow +0.55$   | $\uparrow -0.23 \\ \downarrow +0.32$   | $\uparrow -0.39 \\ \downarrow +0.47$   | $\uparrow -0.23 \\ \downarrow +0.25$   | $\uparrow -0.49 \\ \downarrow +0.21$   | $\uparrow -0.25 \\ \downarrow +0.13$   |
| JES (In-situ analyses - N.P.3)      | $\uparrow -0.50 \\ \downarrow +0.24$   | $\uparrow -0.13 \\ \downarrow +0.21$   | $\uparrow -0.07 \\ \downarrow +0.22$   | $\uparrow -0.47 \\ \downarrow +0.16$   | $\uparrow -0.27 \\ \downarrow +0.04$   | $\uparrow -0.24 \\ \downarrow +0.42$   | $\uparrow -0.75 \\ \downarrow +0.33$   | $\uparrow -0.13 \\ \downarrow +0.29$   | $\uparrow -0.40 \\ \downarrow +0.20$   |

## Приложение Л

## Параметры модели после фита в поиске возбужденных электронов

Параметры модели после фита в CR и SR представлены на Рисунках Л.1– Л.22.



Рис. Л.1. Модель,  $t\bar{t}$  CR1 + SR1,  $m_{e^*}$  =100 ГэВ, конфигурации параметров после фита.



Рис. Л.2. Модель,  $W \ CR2 + t\bar{t} \ CR2 + SR2$ ,  $m_{e^*} = 200 \ \Gamma$ эВ, конфигурации параметров после фита.

## 198



Рис. Л.3. Модель, W CR3 +  $t\bar{t}$  CR3 + SR3,  $m_{e^*}$  =300 ГэВ, конфигурации параметров после фита.



Рис. Л.4. Модель, W CR4 +  $t\bar{t}$  CR4 + SR4,  $m_{e^*}$  =400 ГэВ, конфигурации параметров после фита.



Рис. Л.5. Модель,  $W \text{ CR5} + t\bar{t} \text{ CR5} + \text{SR5}, m_{e^*} = 500 \ \Gamma$ эВ, конфигурации параметров после фита.



Рис. Л.6. Модель, W CR6 +  $t\bar{t}$  CR6 + SR6,  $m_{e^*}$  =600 ГэВ, конфигурации параметров после фита.



Рис. Л.7. Модель, W CR7 +  $t\bar{t}$  CR7 + SR7,  $m_{e^*}$  =700 ГэВ, конфигурации параметров после фита.



Рис. Л.8. Модель, W CR8 +  $t\bar{t}$  CR8 + SR8,  $m_{e^*}$  =800 ГэВ, конфигурации параметров после фита.



Рис. Л.9. Модель, W CR8 +  $t\bar{t}$  CR8 + SR8,  $m_{e^*}$  =900 ГэВ, конфигурации параметров после фита.



Рис. Л.10. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =1000 ГэВ, конфигурации параметров после фита.



Рис. Л.11. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =1250 ГэВ, конфигурации параметров после фита.



Рис. Л.12. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =1500 ГэВ, конфигурации параметров после фита.



Рис. Л.13. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =1750 ГэВ, конфигурации параметров после фита.



Рис. Л.14. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =2000 ГэВ, конфигурации параметров после фита.



Рис. Л.15. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =2250 ГэВ, конфигурации параметров после фита.



Рис. Л.16. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =2500 ГэВ, конфигурации параметров после фита.



Рис. Л.17. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =2750 ГэВ, конфигурации параметров после фита.



Рис. Л.18. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =3000 ГэВ, конфигурации параметров после фита.



Рис. Л.19. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =3250 ГэВ, конфигурации параметров после фита.



Рис. Л.20. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =3500 ГэВ, конфигурации параметров после фита.



Рис. Л.21. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =3750 ГэВ, конфигурации параметров после фита.



Рис. Л.22. Модель, W CR9 +  $t\bar{t}$  CR9 + SR9,  $m_{e^*}$  =4000 ГэВ, конфигурации параметров после фита.